Mathematics

Evaluate : $$\displaystyle \int \left[e^{(2-5x)}+\frac{2}{6x+1}\right]dx $$


SOLUTION
View Full Answer

Its FREE, you're just one step away


Subjective Medium Published on 17th 09, 2020
Next Question
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84
Enroll Now For FREE

Realted Questions

Q1 Single Correct Medium
The value of $$\cfrac { \int _{ 0 }^{ \pi /2 }{ { \left( \sin { x }  \right)  }^{ \sqrt { 3 } +1 } } dx }{ \int _{ 0 }^{ \pi /2 }{ { \left( \sin { x }  \right)  }^{ \sqrt { 3 } -1 } }  } $$ is
  • A. $$\cfrac { \sqrt { 3 } -1 }{ \sqrt { 3 } +1 } $$
  • B. $$\cfrac { \sqrt { 3 } +1 }{ \sqrt { 3 } } $$
  • C. $$\cfrac { 3-\sqrt { 3 } }{ 2 } $$
  • D. $$\cfrac { \sqrt { 3 } +1 }{ \sqrt { 3 } -1 } $$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q2 Single Correct Medium
$$\displaystyle \int \frac{1}{e^{x}+1}dx.$$
  • A. $$\displaystyle x-\log \left ( e^{x} -1\right ).$$
  • B. $$\displaystyle x+\log \left ( e^{x} +1\right ).$$
  • C. $$\displaystyle \log \left ( e^{x} +1\right ).$$
  • D. $$\displaystyle x-\log \left ( e^{x} +1\right ).$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q3 Subjective Medium
Integrate : $$\displaystyle \int e^x \cdot \frac {x}{(1+x)^2}dx$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q4 Single Correct Hard
If $$f\left(\displaystyle\frac{3x-4}{3x+4}\right)=x+2, x\neq -\displaystyle\frac{4}{3}$$, and $$\displaystyle\int f(x)dx=A\log |1-x|+Bx+C$$, then the ordered pair $$(A, B)$$ is equal to (where C is a constant of integration)
  • A. $$\left(\displaystyle\frac{8}{3}, \frac{2}{3}\right)$$
  • B. $$\left(\displaystyle -\frac{8}{3}, -\frac{2}{3}\right)$$
  • C. $$\left(\displaystyle\frac{8}{3}, -\frac{2}{3}\right)$$
  • D. $$\left(\displaystyle -\frac{8}{3}, \frac{2}{3}\right)$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q5 Subjective Medium
Solve:
$$\int \sin ^3x\cos^3xdx$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer