Mathematics

# Evaluate : $\displaystyle \int \frac{1}{\sqrt{\left ( x-1 \right )\left ( x-2 \right )}}dx.$

$\displaystyle =\log\left | \left ( x-\frac{3}{2} \right )+\sqrt{x^{2}-3x+2} \right |+C$

##### SOLUTION
$\displaystyle I=\int \dfrac{1}{\sqrt{x^{2}-3x+2}}dx$

$\displaystyle =\int \dfrac{1}{\sqrt{x^{2}-3x+\dfrac{9}{4}-\dfrac{9}{4}+2}}dx$

$\displaystyle =\int \dfrac{1}{\sqrt{\left ( x-\dfrac{3}{2} \right )^{2}-\left ( \dfrac{1}{2} \right )^{2}}}dx$

$\displaystyle =\log\left | \left ( x-\dfrac{3}{2} \right )+\sqrt{\left ( x-\dfrac{3}{2} \right )^{2}-\left ( \dfrac{1}{2} \right )^{2}} \right |+C$

$\displaystyle =\log\left | \left ( x-\dfrac{3}{2} \right )+\sqrt{x^{2}-3x+2} \right |+C$

Its FREE, you're just one step away

Single Correct Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86

#### Realted Questions

Q1 Subjective Medium
Solve $\int {\frac{{3x - 1}}{{{{\left( {x + 2} \right)}^2}}}} dx$

1 Verified Answer | Published on 17th 09, 2020

Q2 One Word Medium
$\displaystyle\int e^{x}\left ( \frac{x+2}{x+4} \right )^{2}dx$ gives $=e^{x}.\frac{x}{x+ k}.$ find k?

1 Verified Answer | Published on 17th 09, 2020

Q3 Single Correct Medium

$\displaystyle \int\frac{\sec x}{\sqrt{\sin(2x+\alpha)+\sin\alpha}}dx$ is equal to
• A. $\sqrt{2\sec\alpha(\tan x-\tan\alpha)}+c$
• B. $\sqrt{2\sec\alpha(\tan\alpha-\tan x)}+c$
• C. $\sqrt{2\tan\alpha(\sec x-\sec\alpha)}+c$
• D. $\sqrt{2\sec\alpha(\tan x+\tan\alpha)}+c$

1 Verified Answer | Published on 17th 09, 2020

Q4 Subjective Medium
Solve: $\int 3^x.e^x dx =$?

$\int \frac{1}{1+x}\;dx$