Mathematics

# Evaluate : $\displaystyle \int \frac { 1 + \cos x } { x + \sin x } d x$

##### SOLUTION

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84

#### Realted Questions

Q1 Single Correct Medium
The antiderivative of $f(x)=\dfrac{1}{3+5\sin x+3\cos x}$ whose graph passes through the point $(0,0)$ is
• A. $\dfrac{1}{5}\left(\log \left|1-\dfrac{5}{3}\tan x/2\right|\right)$
• B. $\dfrac{1}{5}\left(\log \left|1+\dfrac{5}{3}\cot x/2\right|\right)$
• C. $None\ of\ these$
• D. $\dfrac{1}{5}\left(\log \left|1+\dfrac{5}{3}\tan x/2\right|\right)$

1 Verified Answer | Published on 17th 09, 2020

Q2 Subjective Medium
Prove   $\displaystyle \int_0^{\frac {\pi}{2}}\sin^3xdx=\frac {2}{3}$

1 Verified Answer | Published on 17th 09, 2020

Q3 Single Correct Medium
The value of $\displaystyle \int_{2}^{3} \dfrac {\sqrt {x}}{\sqrt {5 - x} + \sqrt {x}}dx$ is
• A. $1$
• B. $2$
• C. None of these
• D. $\dfrac {1}{2}$

1 Verified Answer | Published on 17th 09, 2020

Q4 Subjective Medium
$\displaystyle \int \dfrac x{2+x^2} dx$

$\displaystyle \int_1^2(4x^3-5x^2+6x+9)dx$