Mathematics

Evaluate : $$\displaystyle \int \dfrac{x}{x-\sqrt{x^2-1}}dx$$


SOLUTION
View Full Answer

Its FREE, you're just one step away


Subjective Medium Published on 17th 09, 2020
Next Question
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86
Enroll Now For FREE

Realted Questions

Q1 Single Correct Hard
Evaluate $$\displaystyle \int_{-\pi /2}^{\pi /2}\left \{ \log \left(\frac{px^{2}+qx+r}{px^{2}-qx+r}\cdot \left ( a+b \right )\cdot \left | \sin x \right | \right) \right \}dx$$
  • A. $$\displaystyle -\pi \log \left ( \frac{a+b}{2} \right ).$$
  • B. $$\displaystyle \frac{\pi}{2} \log \left ( (a+b) \right ).$$
  • C. $$\displaystyle \pi \log \left ( \frac{a+b}{4} \right ).$$
  • D. $$\displaystyle \pi \log \left ( \frac{a+b}{2} \right ).$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q2 Single Correct Hard
$$\displaystyle \int\frac{\sqrt[2]{x}}{1+\sqrt[4]{x^{3}}}dx$$ is equal to
  • A. $$\displaystyle \frac{4}{3}[1+x^{3/4}+\log(1+x^{3/4})]+c$$
  • B. $$\displaystyle \frac{4}{3}[1-x^{3/4}+\log(1+x^{3/4})]+c$$
  • C. $$\displaystyle \frac{4}{3}[1-x^{3/4}-\log(1+x^{3/4})]+c$$
  • D. $$\displaystyle \frac{4}{3}[1+x^{3/4}-\log(1+x^{3/4})]+c$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q3 Single Correct Hard
$$\displaystyle \int _ { 0 } ^ { \pi / 4 } \frac { x \cdot \sin x } { \cos ^ { 3 } x } d x$$ equals to :
  • A. $$\displaystyle \frac { \pi } { 4 } + \frac { 1 } { 2 }$$
  • B. $$\dfrac { \pi } { 4 }$$
  • C. $$\dfrac { \pi } { 4 } + 1$$
  • D. $$\displaystyle \frac { \pi } { 4 } - \frac { 1 } { 2 }$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q4 Single Correct Medium
The value of intergral$$\int_{\pi \4}^{3\\pi }\frac{x}{1+4x}$$
  • A.
  • B.
  • C.
  • D.

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q5 Passage Medium
Consider two differentiable functions $$f(x), g(x)$$ satisfying $$\displaystyle 6\int f(x)g(x)dx=x^{6}+3x^{4}+3x^{2}+c$$ & $$\displaystyle 2 \int \frac {g(x)dx}{f(x)}=x^{2}+c$$. where $$\displaystyle f(x)>0    \forall  x \in  R$$

On the basis of above information, answer the following questions :

Asked in: Mathematics - Limits and Derivatives


1 Verified Answer | Published on 17th 08, 2020

View Answer