Mathematics

Evaluate: $\displaystyle \int \dfrac{\sin x}{\sin 3x} dx$

SOLUTION
$\int \frac{sinx}{sin3x}dx$
$= \int \frac{sinx}{3sinx-4sin^{3}x}dx$
$= \int \frac{dx}{3-4sin^{2}x}$
$= \int \frac{dx}{\frac{3-4(1-cos2x)}{2}}$
$= \int \frac{dx}{3-2(1-cos2x)}$
$= \int \frac{dx}{3-2+2cox2x}$
$= \int \frac{dx}{1+2cos2x}$
$= \int \frac{dx}{1+\frac{2(1-t^{2})}{1+t^{2}}}$
t = tanx
$dt = sec^{2}xdx \Rightarrow dx = \frac{dt}{1+t^{2}}$
$= \int \frac{dt}{1+t^{2}+2-2t^{2}}$
$= \int \frac{dt}{3-t^{2}}$
$\int \frac{sinx}{sin3x}dx= \frac{1}{2\sqrt{3}}ln(\left | \frac{\sqrt{3}+tanx}{\sqrt{3}-tanx} \right |)+c$

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84

Realted Questions

Q1 Single Correct Medium
$\lim\limits_{n\to \infty}\dfrac{1^2+2^2+.....+n^2}{n^3}$ is equal to
• A. $\infty$
• B. $0$
• C. $\dfrac{1}{2}$
• D. $\dfrac{1}{3}$

1 Verified Answer | Published on 17th 09, 2020

Q2 Subjective Hard
Evaluate: $\displaystyle\int \dfrac{1-x^2}{x(1-2x)}dx$.

1 Verified Answer | Published on 17th 09, 2020

Q3 Subjective Medium
Solve the integral:
$\int {\frac{{{x^4} + {x^2} + 1}}{{{x^2} - x + 1}}dx}$

1 Verified Answer | Published on 17th 09, 2020

Q4 Single Correct Medium
$\displaystyle\int_0^\pi \frac{1}{1\, +\,\sin x}\ dx$ is equal to
• A. $1$
• B. $3$
• C. $4$
• D. $2$

1 Verified Answer | Published on 17th 09, 2020

Q5 Single Correct Medium
$\int _{ -1 }^{ 1 }{ x } \tan { ^{ -1 } } xdx$
• A. $\left( \frac { \pi }{ 2 } +1 \right)$
• B. $(\pi-1)$
• C. $None$
• D. $\left( \frac { \pi }{ 2 } -1 \right)$