Mathematics

# Evaluate: $\displaystyle \int \dfrac{1}{x \,log \,x \,log (log \,x)}dx$

$log(log(log(x)))+c$

##### SOLUTION
Now,
$\displaystyle \int \dfrac{1}{x \,log \,x \,log (log \,x)}dx$
$\displaystyle \int \dfrac{d\{\log (\log x)\}}{\log (\log x)}dx$
$=\log \{\log (\log x)\}+c$ [ Where $c$ being integrating constant].

Its FREE, you're just one step away

Single Correct Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86

#### Realted Questions

Q1 Subjective Hard
Evaluate the following integrals:
$\int { \cfrac { { x }^{ 2 }+x+1 }{ { x }^{ 2 }-x+1 } } dx$

1 Verified Answer | Published on 17th 09, 2020

Q2 Subjective Medium
Evaluate the given integral.
$\int { x\sec ^{ 2 }{ x } } dx\quad \quad$

1 Verified Answer | Published on 17th 09, 2020

Q3 Single Correct Medium
If $f(x)={ x }^{ 3 }+x,$then $\int _{ 1 }^{ 2 }{ f\left( x \right) dx+2\int _{ 1 }^{ 5 }{ { f }^{ -1 }\left( 2x \right) dx } }$
• A. 9
• B. 8
• C. 18
• D. 21

1 Verified Answer | Published on 17th 09, 2020

Q4 Subjective Medium
Prove that $\displaystyle\int^a_0\dfrac{dx}{x+\sqrt{a^2-x^2}}=\dfrac{\pi}{4}$.

1 Verified Answer | Published on 17th 09, 2020

Q5 Single Correct Medium
Integrate the following function: $\displaystyle \int{ \dfrac { dx }{ \sqrt{( 1-{ 4x }^{ 2 } ) } } }$
• A. $-\dfrac{1}{2}\sin^{-1}2x+c$
• B. $\dfrac{1}{2}\cos^{-1}2x+c$
• C. $-\dfrac{1}{2}\cos^{-1}2x+c$
• D.
$\dfrac{1}{2}\sin^{-1}2x+c$