Mathematics

Evaluate: $$\displaystyle \int \dfrac {2x}{x^2} dx$$


SOLUTION
$$I=\displaystyle \int \dfrac {2x}{x^2} dx$$

$$I=\displaystyle \int \dfrac 2xdx$$

$$I=2\log xdx$$
View Full Answer

Its FREE, you're just one step away


Subjective Medium Published on 17th 09, 2020
Next Question
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84
Enroll Now For FREE

Realted Questions

Q1 Single Correct Medium
Evaluate  $$\int _{ 0 }^{ 1 }{ \sqrt { \cfrac { x }{ 1-{ x }^{ 3 } }  }  } dx=$$
  • A. $$\cfrac{\pi}{4}$$
  • B. $$\cfrac{\pi}{3}$$
  • C. $$\cfrac{\pi}{6}$$
  • D. $$\cfrac{\pi}{2}$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q2 Subjective Medium
Evaluate $$\displaystyle\int_{0}^{2}x\sqrt{x+2} \ dx$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q3 Single Correct Hard
$$\int { { x }^{ 4 }{ e }^{ 2x } } dx=$$
  • A. $$\cfrac { { e }^{ 2x } }{ 2 } \left( 2{ x }^{ 4 }-4{ x }^{ 3 }+6{ x }^{ 2 }-6x+3 \right) +C$$
  • B. $$\cfrac { { e }^{ 2x } }{ 8 } \left( 2{ x }^{ 4 }+4{ x }^{ 3 }+6{ x }^{ 2 }+6x+3 \right) +C$$
  • C. $$\cfrac { { e }^{ 2x } }{ 4 } \left( 2{ x }^{ 4 }+4{ x }^{ 3 }+6{ x }^{ 2 }+6x+3 \right) +C$$
  • D. $$\cfrac { { e }^{ 2x } }{ 4 } \left( 2{ x }^{ 4 }-4{ x }^{ 3 }+6{ x }^{ 2 }-6x+3 \right) +C$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q4 Subjective Medium
Evaluate the following:
$$\displaystyle \int_{0}^{\dfrac{1}{2}} \dfrac{dx}{(1 + x^2) \sqrt{1 - x^2}}$$ (Hint: let $$x = sin \,\theta$$)

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q5 Passage Medium
Consider two differentiable functions $$f(x), g(x)$$ satisfying $$\displaystyle 6\int f(x)g(x)dx=x^{6}+3x^{4}+3x^{2}+c$$ & $$\displaystyle 2 \int \frac {g(x)dx}{f(x)}=x^{2}+c$$. where $$\displaystyle f(x)>0    \forall  x \in  R$$

On the basis of above information, answer the following questions :

Asked in: Mathematics - Limits and Derivatives


1 Verified Answer | Published on 17th 08, 2020

View Answer