Mathematics

Evaluate $$\displaystyle \int { \dfrac { 1-4x }{ \sqrt { 6+x-{ 2x }^{ 2 } }  }  } dx$$


SOLUTION
Let $$ t=6+x-2x^2\\dt=1-4x dx $$

$$\displaystyle \int \dfrac 1{\sqrt t} dt\\2\sqrt t+c\\2\sqrt{6+x-2x^2}+c$$

View Full Answer

Its FREE, you're just one step away


Subjective Medium Published on 17th 09, 2020
Next Question
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86
Enroll Now For FREE

Realted Questions

Q1 Single Correct Medium
If $$f(a+b-x)=f(x)$$ then $$\int _{a}^{b}{x\ f(x)dx}=$$
 
  • A. $$\int _{ a }^{ b }{ f\left( x \right) dx } $$
  • B. $$(a+b)\int _{ a }^{ b }{ f\left( x \right) dx } $$
  • C. $$0$$
  • D. $$\left( \dfrac { a+b }{ 2 } \right) \int _{ a }^{ b }{ f\left( x \right) dx } $$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q2 Single Correct Hard
$$\displaystyle \int e^{2x} (\sqrt{3}cosx-sinx)dx=$$
  • A. $$\displaystyle \frac{e^{2x}}{5}[(2\sqrt{3}+1)cosx -(\sqrt{3}-2)sinx]+c$$
  • B. $$\displaystyle \frac{e^{2x}}{5}[(2\sqrt{3}+1)sinx+(\sqrt{3}-2)\cos x]+c$$
  • C. $$\displaystyle \frac{e^{2x}}{5}[(2\sqrt{3}+1)sinx-(\sqrt{3}-2)cosx]+c$$
  • D. $$\displaystyle \frac{e^{2x}}{5}[(2\sqrt{3}+1)cosx+(\sqrt{3}-2)sin x]+c$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q3 Single Correct Medium
$$\int \sin^{-1}\left(\dfrac {2x}{1+x^{2}}\right)dx=f(x)-\log(1+x^{2})+c \Rightarrow f(x)=$$ 
  • A. $$-2x\ \tan^{-1}x$$
  • B. $$x\ \tan^{-1}x$$
  • C. $$-x\ \tan^{-1}x$$
  • D. $$2x\ \tan^{-1}x$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q4 TRUE/FALSE Medium
$$\int \sqrt {x^2 + a^2} dx =\dfrac{x}{2} \sqrt {x^2 + a^2} + \dfrac{a^2}{2} log (x +\sqrt {x^2 + a^2)} +c$$
  • A. False
  • B. True

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q5 Single Correct Medium
$$\int _{ 1 }^{ 3 }{ \log { x }  } dx=......\left( x>0\in { R }^{ + } \right) $$
  • A. $$-2+\log { 9 } \quad $$
  • B. $$2+\log { 27 } $$
  • C. $$\log { \left( \cfrac { 27 }{ e } \right) } $$
  • D. $$-2+\log { 27 } $$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer