Mathematics

Evaluate $\displaystyle \int_\cfrac{\pi}{4}^\cfrac{\pi}{2}(\sqrt{\tan x}+\sqrt{\cot x})dx=$

$\dfrac{\pi}{\sqrt{2}}$

SOLUTION
$\int_{\cfrac{\pi }{4}}^{\cfrac{\pi }{2}} {\left( {\sqrt {\tan x} + \sqrt {\cot x} } \right)dx}$
$= \int_{\cfrac{\pi }{4}}^{\cfrac{\pi }{2}} {\left( {\sqrt {\tan x} + \cfrac{1}{{\sqrt {\tan x} }}} \right)dx}$
$= \int_{\cfrac{\pi }{4}}^{\cfrac{\pi }{2}} {\left( {\cfrac{{1 + \tan x}}{{\sqrt {\tan x} }}} \right)dx}$
putting $\tan x = {t^2}$
$\Rightarrow {\sec ^2}xdx = 2tdt$
$\Rightarrow \left( {1 + {{\tan }^2}x} \right)dx = 2tdt$
$\Rightarrow \left( {1 + {t^4}} \right)dx = 2tdt$
$\Rightarrow dx = \cfrac{{2tdt}}{{1 + {t^4}}}$
$= \int_1^\infty {\cfrac{{\left( {1 + {t^2}} \right)}}{{t\left( {1 + {t^4}} \right)}} \times 2tdt}$
$= 2\int_1^\infty {\cfrac{{1 + {t^2}}}{{1 + {t^4}}}} dt$
$= 2\int_1^\infty {\cfrac{{\left( {1 + \cfrac{1}{{{t^2}}}} \right)}}{{\left( {{t^2} + \cfrac{1}{{{t^2}}}} \right)}}dt}$
$= 2\int_1^\infty {\cfrac{{\left( {1 + \cfrac{1}{{{t^2}}}} \right)}}{{\left( {{t^2} + \cfrac{1}{{{t^2}}} - 2 + 2} \right)}}dt}$
$= 2\int_1^\infty {\cfrac{{\left( {1 + \cfrac{1}{{{t^2}}}} \right)}}{{{{\left( {t - \cfrac{1}{t}} \right)}^2} + {{\left( {\sqrt 2 } \right)}^2}}}dt}$
putting $t - \cfrac{1}{t} = y$
$\ \Rightarrow \left( {1 + \cfrac{1}{{{t^2}}}} \right)dt = dy$
$= 2\int_0^\infty {\cfrac{{dy}}{{{y^2} + {{\left( {\sqrt 2 } \right)}^2}}}}$
$= 2 \times \cfrac{1}{{\sqrt 2 }}\left[ {{{\tan }^{ - 1}}\left( {\cfrac{y}{{\sqrt 2 }}} \right)} \right]_0^\infty$
$= \sqrt 2 \left[ {{{\tan }^{ - 1}}\left( \infty \right) - {{\tan }^{ - 1}}\left( 0 \right)} \right]$
$= \sqrt 2 \left( {\cfrac{\pi }{2}} \right)$
$= \cfrac{\pi }{{\sqrt 2 }}$

Its FREE, you're just one step away

Single Correct Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86

Realted Questions

Q1 Subjective Medium
$\displaystyle \int_2^4 (6x^3 + 5x) dx =$

1 Verified Answer | Published on 17th 09, 2020

Q2 Single Correct Hard
If $\displaystyle\int{\frac{e^x(2-x^2)}{(1-x)\sqrt{1-x^2}}dx}=\mu e^x{\left(\frac{1+x}{1-x}\right)}^{\lambda}+C$, then $2(\lambda+\mu)$ is equal to
• A. $-1$
• B. $0$
• C. $2$
• D. $3$

1 Verified Answer | Published on 17th 09, 2020

Q3 Single Correct Medium
Thew value of the integral $\displaystyle\int _{ 0 }^{ \pi }{ \frac { \sin { 2kx } }{ \sin { x } } dx }$, where $k\in I$, is
• A. $\pi$
• B. $\dfrac{\pi}{2}$
• C. $2\pi$
• D. $\dfrac{\pi}{2}$

1 Verified Answer | Published on 17th 09, 2020

Q4 Subjective Medium

Evaluate the following definite integral:

$\displaystyle\int_{0}^{1}\dfrac{\tan^{-1}x}{1+x^{2}}dx$

$\int \frac{2x^{2}}{3x^{4}2x} dx$