Mathematics

# Evaluate $\displaystyle \int_{1}^{2}x^2 \ dx$

##### SOLUTION
Consider, $I=\displaystyle \int_{1}^{2}x^2 \ dx$

$I=\left[\dfrac{x^3}3\right]_1^2$

$I=\dfrac 83-\dfrac 13=\dfrac 73$

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 105

#### Realted Questions

Q1 Single Correct Medium
$\displaystyle \int\frac{\cos x}{\sin x-\cos x}dx=$
• A. $\dfrac{1}{2}\log|\sin$ x-cos $x|+\displaystyle \frac{x}{2}+c$
• B. $\log|\sin$ x-cos $x|+x+c$
• C. $\log|\sin$ x-cos $x|-x+c$
• D. $\displaystyle \frac{1}{2}\log|\sin$ x-cos $x|-\displaystyle \frac{x}{2}+c$

1 Verified Answer | Published on 17th 09, 2020

Q2 Subjective Medium
Evaluate :
$\displaystyle\int \sqrt{\dfrac{1-\cos 2x}{1+\cos 2x}}dx$

1 Verified Answer | Published on 17th 09, 2020

Q3 Multiple Correct Medium
If $\displaystyle f\left ( x \right )=\int_{1}^{x}\frac{\ln t}{1+t}dt$ where $x > 0$, then the value(s) of $x$ satisfying the equation, $f(x) +f(1/x)=2$ is
• A. $2$
• B. $e$
• C. $\displaystyle e^{-2}$
• D. $\displaystyle e^{2}$

1 Verified Answer | Published on 17th 09, 2020

Q4 Subjective Hard
Integrate the function    $x\sin^{-1}x$

1 Verified Answer | Published on 17th 09, 2020

Q5 Subjective Medium
Evaluate:
$\displaystyle\int x^n\log_ex\ dx$