Mathematics

# Evaluate: $\displaystyle \int_{-1}^{1}\dfrac {1}{x^2 +2x+5}dx$

##### SOLUTION

$I=\displaystyle \int_{-1}^1\dfrac {1}{x^2+2x+5}dx$

$I=\displaystyle \int_{-1}^1\dfrac {1}{(x+1)^2 +2^2}dx$

$I=\dfrac {1}{2}\left [\tan^{-1} \dfrac {x+1}{2}\right]_{-1}^1$

$I=\dfrac {1}{2}(\tan^{-1} 1-\tan^{-1}0)$

$I=\dfrac {\pi}{8}$

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86

#### Realted Questions

Q1 One Word Medium
$\int_0^132x^3+8x+4=A$. Then the value of A is

1 Verified Answer | Published on 17th 09, 2020

Q2 Single Correct Medium
lf $f(x)=\left\{\begin{array}{l}e^{\cos x}\sin x, for |x|\leq 2\\2 ; otherwise\end{array}\right.$, then $\displaystyle \int_{-2}^{3}f(x)dx$ is
• A. $0$
• B. $1$
• C. $3$
• D. $2$

1 Verified Answer | Published on 17th 09, 2020

Q3 Subjective Medium
Evaluate $\displaystyle \int { \frac { 1 }{(1-2x) } }dx$

1 Verified Answer | Published on 17th 09, 2020

Q4 Subjective Medium
Find the antiderivative of the function $(\sin \dfrac{x}{2} + \cos \dfrac{x}{2})^2.$

Solve: $\displaystyle\int\limits_{-\dfrac{\pi}{2}}^{\dfrac{\pi}{2}} \sin^5 x.\cos^{100} x \,dx$