Mathematics

# Evaluate $\displaystyle \int_{0}^{2}(3x^2-2)dx$

##### SOLUTION
$\displaystyle \int_{0}^{2}(3x^2-2)dx$

$=\dfrac{x^3}{3}-2x\bigg|_0^2$

$=x^3-2x\bigg|_0^2$

$=2^3-2(2)-0-0$

$=8-4=4$

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 111

#### Realted Questions

Q1 Single Correct Medium
What is $\int_{\frac{\pi}{2}}^{0} \ln (\tan x)dx$ equal to ?
• A. $\ln2$
• B. $-\ln2$
• C. None of the above
• D. $0$

1 Verified Answer | Published on 17th 09, 2020

Q2 Subjective Medium
$\displaystyle\int^{1/2}_0\dfrac{x\ dx}{(y^2+x^2)^{3/2}}$

1 Verified Answer | Published on 17th 09, 2020

Q3 Subjective Medium
Evaluate the following integrals:$\displaystyle \int {\dfrac{4x+3}{2x+1}.dx}$

1 Verified Answer | Published on 17th 09, 2020

Q4 Single Correct Hard
Let $f(x)$ be a positive function. Let
$I_{1} = \int_{1 - k}^{k} xf\left \{x(1 - x)\right \} dx$,
$I_{2} = \int_{1 - k}^{k} f\left \{x(1 - x) \right \} dx$,
where $2k - 1 > 0$, then $\dfrac {I_{1}}{I_{2}}$ is
• A. $2$
• B. $k$
• C. $1$
• D. $\dfrac {1}{2}$

$\int_{}^{} {\frac{{ - 1}}{{\sqrt {1 - {x^2}} }}dx}$