Mathematics

# Evaluate $\displaystyle \int_{0}^{1}{}{(2x^2 +x+1)}\ dx$

##### SOLUTION
Consider, $I=\displaystyle \int_{0}^{1}{}{2x^2 +x+1}dx$

$=\left [\dfrac {2x^3}{3}+\dfrac {x^2}{2}+x\right]_0^1$

$=\dfrac 23+\dfrac 12+1=\dfrac {13}6$

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84

#### Realted Questions

Q1 Subjective Medium
Evaluate: $\int x \sin 2 x d x$

1 Verified Answer | Published on 17th 09, 2020

Q2 Single Correct Medium
$\int _{ a }^{ b }{ \dfrac{dx}{2 + 3x} } =$
• A. $\dfrac{1}{3} log_e (2 + 3b)$
• B. $\dfrac{1}{3} log_e (2 + 2a)$
• C. $\dfrac{1}{3} log_e \left(\dfrac{2 + 3a}{2 + 3b}\right)$
• D. $\dfrac{1}{3} log_e \left(\dfrac{2 + 3b}{2 + 3a}\right)$

1 Verified Answer | Published on 17th 09, 2020

Q3 Single Correct Hard
If $f (x)=\dfrac{e^{x}}{1+e^{x}},A=\displaystyle \int_{f(-a)}^{f(a)}xg\{x(1-x)\}dx$  and $B=\displaystyle \int_{f(-a)}^{f(a)}g\{x(1-x)\}dx$, then $\dfrac{B}{A}$ is equal to

• A. -1
• B. -3
• C. 1
• D. 2

1 Verified Answer | Published on 17th 09, 2020

Q4 Subjective Medium
$\int { \dfrac { \sqrt { 4+{ x }^{ 2 } } }{ { x }^{ 6 } } dx } =\dfrac { { \left( a+{ x }^{ 2 } \right) }^{ 3/2 }\left( { x }^{ 2 }-b \right) }{ 120{ x }^{ 5 } }+C$ then $a+b$ equals to:

Solve: $\int\limits_0^{\frac{\pi }{2}} {{{\sin }^2}x{{\cos }^3}xdx}$