Mathematics

$$\displaystyle \int \frac{sin\, 2x}{sin^4\, x\, +\, cos^4\, x}dx$$ is equal to


ANSWER

$$cot^{-1}\, (cot^2\, x)\, +\, c$$

$$-cot^{-1}\, (tan^2\, x)\, +\, c$$

$$tan^{-1}\, (tan^2\, x)\, +\, c$$

$$-tan^{-1}\, (cos2x\, x)\, +\, c$$


View Full Answer

Its FREE, you're just one step away


Multiple Correct Hard Published on 17th 09, 2020
Next Question
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 105
Enroll Now For FREE

Realted Questions

Q1 Single Correct Hard
$$\displaystyle \int \frac{\cot^{-1}(e^x)}{e^x} dx$$ is equal to:
  • A. $$\displaystyle \frac{1}{2}\ln (e^{2x}+1)-\displaystyle \frac{\cot^{-1}(e^x)}{(e^x)}+x+c$$
  • B. $$\displaystyle \frac{1}{2}\ln (e^{2x}+1)+\displaystyle \frac{\cot^{-1}(e^x)}{(e^x)}+x+c$$
  • C. $$\displaystyle \frac{1}{2}\ln (e^{2x}+1)+\displaystyle \frac{\cot^{-1}(e^x)}{(e^x)}-x+c$$
  • D. $$\displaystyle \frac{1}{2}\ln (e^{2x}+1)-\displaystyle \frac{\cot^{-1}(e^x)}{(e^x)}-x+c$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q2 Subjective Hard
Evaluate: $$\displaystyle{\int \dfrac{1}{\sin x + \sec x}}\ dx$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q3 Single Correct Medium

$$\displaystyle \int_{0}^{\infty}\frac{dx}{(x+\sqrt{x^{2}+1})^{5}}=$$
  • A. 1/24
  • B. 1/5
  • C. 5/36
  • D. 5/24

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q4 Single Correct Medium
If $$\displaystyle f\left ( x \right )$$ is a function of $$x$$ such that $$\displaystyle \frac{1}{\left ( 1 + x \right ) \left ( 1 + x^{2} \right )} = \frac{A}{1 + x} + \frac{f\left ( x \right )}{1 + x^{2}}$$ for all $$\displaystyle x \: \epsilon \: R$$ then $$\displaystyle f\left ( x \right )$$ is
  • A. $$\displaystyle \frac{x + 1}{2}$$
  • B. $$\displaystyle 1 - x$$
  • C. none of these
  • D. $$\displaystyle \frac{1 - x}{2}$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q5 Subjective Easy
Evaluate:
$$ \int_{}^{} {\frac{{ - 1}}{{\sqrt {1 - {x^2}} }}dx} $$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer