Mathematics

$$\displaystyle\int^{\pi/2}_{-\pi/2}\cos xdx=?$$


ANSWER

$$2$$


SOLUTION
View Full Answer

Its FREE, you're just one step away


Single Correct Medium Published on 17th 09, 2020
Next Question
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 114
Enroll Now For FREE

Realted Questions

Q1 Subjective Hard
Solve $$\dfrac { \int _{ 0 }^{ a }{ { x }^{ 4 }\sqrt { { a }^{ 2 }-{ x }^{ 2 } }  }  }{ \int _{ 0 }^{ a }{ { x }^{ 2 }\sqrt { { a }^{ 2 }-{ x }^{ 2 } }  }  } $$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q2 Single Correct Medium
Evaluate : $$\displaystyle\int^a_{-a}f(x)dx$$
  • A. $$2\displaystyle\int^a_0\{f(x)+f(-x)\}dx$$
  • B. $$2\displaystyle\int^a_0\{f(x)-f(-x)\}dx$$
  • C. None of these
  • D. $$\displaystyle\int^a_0\{f(x)+f(-x)\}dx$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q3 Single Correct Hard
The integral $$\displaystyle \int{\frac{\sec^2 x}{\left(\sec x + \tan x \right)^{9/2}}}$$ dx equals (for some arbitrary constant $$k$$)
  • A. $$\displaystyle \frac{-1}{\left(\sec x + \tan x \right)^{11/2}} \space \left\{ \frac{1}{11}-\frac{1}{7} \left(\sec x + \tan x \right)^2 \right\} + k$$
  • B. $$\displaystyle \frac{1}{\left(\sec x + \tan x \right)^{11/2}} \space \left\{ \frac{1}{11}-\frac{1}{7} \left(\sec x + \tan x \right)^2 \right\} + k$$
  • C. $$\displaystyle \frac{1}{\left(\sec x + \tan x \right)^{11/2}} \left\{ \frac{1}{11}+\frac{1}{7} \left(\sec x + \tan x \right)^2 \right\} + k$$
  • D. $$\displaystyle \frac{-1}{\left(\sec x + \tan x \right)^{11/2}} \left\{ \frac{1}{11}+\frac{1}{7} \left(\sec x + \tan x \right)^2 \right\} + k$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q4 Subjective Hard
Evaluate $$\displaystyle \int \dfrac {e^{2x} - 1}{e^{2x} + 1} dx$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q5 Subjective Medium
$$\int { \cfrac { f'(x) }{ f(x) } dx } =\log { [f(x)] } +c$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer