Mathematics

# $\displaystyle\int^{\pi/2}_{-\pi/2}\cos xdx=?$

$2$

##### SOLUTION

Its FREE, you're just one step away

Single Correct Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 114

#### Realted Questions

Q1 Subjective Hard
Solve $\dfrac { \int _{ 0 }^{ a }{ { x }^{ 4 }\sqrt { { a }^{ 2 }-{ x }^{ 2 } } } }{ \int _{ 0 }^{ a }{ { x }^{ 2 }\sqrt { { a }^{ 2 }-{ x }^{ 2 } } } }$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q2 Single Correct Medium
Evaluate : $\displaystyle\int^a_{-a}f(x)dx$
• A. $2\displaystyle\int^a_0\{f(x)+f(-x)\}dx$
• B. $2\displaystyle\int^a_0\{f(x)-f(-x)\}dx$
• C. None of these
• D. $\displaystyle\int^a_0\{f(x)+f(-x)\}dx$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q3 Single Correct Hard
The integral $\displaystyle \int{\frac{\sec^2 x}{\left(\sec x + \tan x \right)^{9/2}}}$ dx equals (for some arbitrary constant $k$)
• A. $\displaystyle \frac{-1}{\left(\sec x + \tan x \right)^{11/2}} \space \left\{ \frac{1}{11}-\frac{1}{7} \left(\sec x + \tan x \right)^2 \right\} + k$
• B. $\displaystyle \frac{1}{\left(\sec x + \tan x \right)^{11/2}} \space \left\{ \frac{1}{11}-\frac{1}{7} \left(\sec x + \tan x \right)^2 \right\} + k$
• C. $\displaystyle \frac{1}{\left(\sec x + \tan x \right)^{11/2}} \left\{ \frac{1}{11}+\frac{1}{7} \left(\sec x + \tan x \right)^2 \right\} + k$
• D. $\displaystyle \frac{-1}{\left(\sec x + \tan x \right)^{11/2}} \left\{ \frac{1}{11}+\frac{1}{7} \left(\sec x + \tan x \right)^2 \right\} + k$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q4 Subjective Hard
Evaluate $\displaystyle \int \dfrac {e^{2x} - 1}{e^{2x} + 1} dx$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q5 Subjective Medium
$\int { \cfrac { f'(x) }{ f(x) } dx } =\log { [f(x)] } +c$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020