Mathematics

$\displaystyle\int^{\pi}_0\sqrt{2}(1+\cos x)^{7/2}dx=?$

$\dfrac{512}{35}$

Its FREE, you're just one step away

Single Correct Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84

Realted Questions

Q1 Subjective Hard
Find : $\displaystyle \int_{0}^{\tfrac {\pi}{2}} \dfrac {dx}{4 + 5\cos x} dx$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q2 Single Correct Medium
If $\displaystyle \frac{3\mathrm{x}}{(\mathrm{x}-6)(\mathrm{x}+\mathrm{a})}$ $=\displaystyle \frac{2}{\mathrm{x}-6}+\frac{1}{\mathrm{x}+a}$ then $a=$
• A. 2
• B. -3
• C. -2
• D. 3

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q3 Single Correct Hard
The value of $\displaystyle \lim_{n \rightarrow \infty} \Sigma_{i=1}^n log \left(2 +\dfrac{5i}{n} \right) \dfrac{5}{n}$ is equal to?
• A. $\int_2^5 ln(x) dx$
• B. $\int_3^7 ln(x) dx$
• C. $\int_2^7 ln(x^2) dx$
• D. $\int_2^7 ln(x) dx$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q4 Single Correct Hard
If $\displaystyle \int \dfrac{x + \sqrt[3]{x^2} + \sqrt[6]{x}}{x(1+\sqrt[3]{x})} dx = ax^{\frac{2}{3}} + b\ \tan^{-1}(\sqrt[6]{x}) +c$ then:
• A. $a= \frac{3}{4}$
• B. $a= \frac{-3}{2}$
• C. $a= \frac{-3}{4}$
• D. $a= \frac{3}{2}$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q5 Single Correct Hard
The value of $\displaystyle\int_{-1}^1{\frac{x}{\sqrt{1-x^2}}.\sin^{-1}{(2x\sqrt{1-x^2})}dx}$, is equal to
• A. $4\sqrt{2}$
• B. $4(\sqrt{2}+1)$
• C. none of these
• D. $4(\sqrt{2}-1)$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020