Mathematics

# $\displaystyle\int^{\dfrac{\pi}{2}}_0\dfrac{\sin x}{1+\cos^2x}dx$.

##### SOLUTION
Putting $\cos x = t$
$-\sin x = dt$
$\displaystyle \int_0^1 \cfrac{1}{1+t^2} dt$
$\displaystyle \Big[\tan^{-1} t\Big]_0^1$
$\implies \cfrac{\pi}{4}$

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86

#### Realted Questions

Q1 Single Correct Medium
Solve $\displaystyle \int { { x }^{ 2 }.\sin {2 x }\ dx }$
• A. $\dfrac { { x }^{ 2 }\cos { 2x } }{ 2 } +\dfrac { 2x\sin { 2x } }{ 4 } +\dfrac { 2\cos { 2x } }{ 8 } +c$
• B. $\dfrac { -{ x }^{ 2 }\cos { 2x } }{ 2 } -\dfrac { x\sin { 2x } }{ 2 } +\dfrac { \sin{ 2x } }{ 8 } +c$
• C. $None$
• D. $\dfrac { {- x }^{ 2 }\cos { 2x } }{ 2 } +\dfrac { 2x\sin { 2x } }{ 4 } +\dfrac { 2\cos { 2x } }{ 8 } +c$

1 Verified Answer | Published on 17th 09, 2020

Q2 Single Correct Medium
Evaluate: $\displaystyle \int \dfrac{1}{x \,log \,x \,log (log \,x)}dx$
• A. $log(log(x))+c$
• B. $log(log(log(\dfrac{1}{x})))+c$
• C. $log(log(\dfrac{1}{x}))+c$
• D. $log(log(log(x)))+c$

1 Verified Answer | Published on 17th 09, 2020

Q3 Subjective Medium
$\int {{e^{\sqrt x }}dx}$ is equals to.

1 Verified Answer | Published on 17th 09, 2020

Q4 Single Correct Medium
Integrate $\displaystyle \int \dfrac {x}{x+10}dx$
• A. $x+10\ln|x+10|+C$
• B. $x+10\ln|x|+C$
• C. None
• D. $x-10\ln|x+10|+C$

Evaluate the following : $\displaystyle\int \dfrac{1}{x^{2}+8x+12}.dx$