Mathematics

$$\displaystyle\int{\dfrac{dx}{\sqrt{1-{x}^{2}}}}$$


SOLUTION
Let $$x=\sin{\theta}\Rightarrow\,dx=\cos{\theta}d\theta$$
$$1-{x}^{2}=1-{\sin}^{2}{\theta}={\cos}^{2}{\theta}$$
$$\sqrt{1-{x}^{2}}=\cos{\theta}$$
$$\displaystyle\int{\dfrac{dx}{\sqrt{1-{x}^{2}}}}$$
$$=\displaystyle\int{\dfrac{\cos{\theta}d\theta}{\cos{\theta}}}$$
$$=\displaystyle\int{d\theta}$$
$$=\theta+c$$
$$={\sin}^{-1}{x}+c$$
View Full Answer

Its FREE, you're just one step away

Create your Digital Resume For FREE on your name's sub domain "yourname.wcard.io". Register Here!


Subjective Medium Published on 17th 09, 2020
Next Question
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 124
Enroll Now For FREE

Realted Questions

Q1 Subjective Medium
Solve:
$$I = \displaystyle\int {\dfrac{{dx}}{{\left( {x + 1} \right)\sqrt {1 - {x^2}} }}} $$ .

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q2 Subjective Medium
Evaluate the integral:
$$\displaystyle \int e^x\left(\frac{1+sinx}{1+cosx}\right) dx$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q3 Subjective Medium
Evaluate
$$\displaystyle\int \frac { \sec ^ { 2 } \sqrt { x } } { \sqrt { x } } dx$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q4 Single Correct Medium
Let $$x > 0$$ be a fixed real number. Then the integral $$\int_{0}^{\infty} e^{-t} |x - t| dt$$ is equal to.
  • A. $$x - 2e^{-x} + 1$$
  • B. $$x + 2e^{-x} + 1$$
  • C. $$-x - 2e^{-x} + 1$$
  • D. $$x + 2e^{-x} - 1$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q5 Passage Medium
Let $$\displaystyle I_{1}=\int_{0}^{1}(1-x^{2})^{1/3} dx$$  &  $$\displaystyle I_{2}=\int_{0}^{1}(1-x^{3})^{1/2} dx$$

On the basis of above information, answer the following questions: 

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer