Mathematics

# $\displaystyle\int^{2+\sqrt{3}}_{2-\sqrt{3}}\dfrac{xdx}{(1+x)(1+x^2)}=?$

$\dfrac{\pi}{4}$

Its FREE, you're just one step away

Single Correct Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84

#### Realted Questions

Q1 Subjective Hard
$\text { Evaluate: }\displaystyle \int \dfrac{d x}{x\left(x^{5}+3\right)}$

1 Verified Answer | Published on 17th 09, 2020

Q2 Single Correct Medium
Evaluate the following integral : $\displaystyle \int \sqrt{4x^{2}+9} \ dx$
• A. ${x}.\sqrt{4x^{2}+9}+\dfrac{9}{4} \ln \left | 2x+\sqrt{4x^{2}+9} \right |+C$
• B. $\dfrac{1}{2}.\sqrt{4x^{2}+9}+\dfrac{9}{4} \ln \left | 2x+\sqrt{4x^{2}+9} \right |+C$
• C. none of these
• D. $\dfrac{x}{2}.\sqrt{4x^{2}+9}+\dfrac{9}{4} \ln \left | 2x+\sqrt{4x^{2}+9} \right |+C$

1 Verified Answer | Published on 17th 09, 2020

Q3 Single Correct Medium
$\displaystyle \int (3x^2-1 )dx$
• A. $x^2-x$
• B. $x^3-1$
• C. None
• D. $x^3-x$

1 Verified Answer | Published on 17th 09, 2020

Q4 Subjective Medium
$\displaystyle\int {\frac{{\left( {2x + 1} \right)}}{{\left( {x + 2} \right)\left( {x - 3} \right)}}dx}$

1 Verified Answer | Published on 17th 09, 2020

Q5 Subjective Easy
$\int \frac{2x^{2}}{3x^{4}2x} dx$