Mathematics

# $\displaystyle\int { \sin { x\sin { \left( \cos { x } \right) } } } dx$

##### SOLUTION
$I=\int { \sin { x } \sin { (\cos { x } ) } dx }$
Putting $\cos { x } =t$
differentiating both sides,
$-\sin { x } dx=dt$
and substituting the values,
$I=-\int { \sin { t } dt } =-(-\cos { t } )=\cos { t }$
$=\cos { (\cos { x } ) } \quad [\therefore \cos { x } =t]$

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84

#### Realted Questions

Q1 Single Correct Medium
The value of the definite integral
$\overset { { a }_{ 1 } }{ \underset { { a }_{ 2 } }{ \int { \frac { d\theta }{ 1+tan\theta } } } } =\frac { 501\pi }{ K }$ where $\ a _{ 2 }=\quad \frac { 1003\pi }{ 2008 }$ and ${ \ a }_{ 1 }=\frac { \pi }{ 2008 }$ The value of K equalls
• A. 2007
• B. 2006
• C. 2009
• D. 2008

1 Verified Answer | Published on 17th 09, 2020

Q2 Single Correct Hard
$\int\dfrac{2\,-\,sin 2x}{1\,-\,cos 2x} e^xdx$ is equal to
• A. $e^x\,cot\,x\,+\,c$
• B. $2e^x\,cot\,x\,+\,c$
• C. $-2e^2\,cot\,x\,+\,c$
• D. $-e^x\,cot\,x\,+\,c$

1 Verified Answer | Published on 17th 09, 2020

Q3 Single Correct Medium
$\displaystyle\int \frac{xdx}{(1+x)^{3/2}}$ is equal to.
• A. $\displaystyle\frac{(2+x)}{\sqrt{1+x}}+C$
• B. $\displaystyle\frac{3}{2}\frac{3}{\sqrt{1+x}}+C$
• C. $\displaystyle\frac{3}{2}\frac{(2+x)}{\sqrt{1+x}}+C$
• D. $2\displaystyle\frac{(2+x)}{\sqrt{1+x}}+C$

1 Verified Answer | Published on 17th 09, 2020

Q4 Single Correct Hard
Evaluate the following integrals:

$\displaystyle \int \dfrac{x^3}{2x + 1}dx$
• A. $\dfrac{x^3}{3}+\dfrac{x^2}{8}+\dfrac{1}{8x}-\dfrac{1}{16}log(2x+1)+C$
• B. $\dfrac{x^3}{6}-\dfrac{x^2}{6}-\dfrac{1}{8x}-\dfrac{1}{16}log(2x+1)+C$
• C. $\dfrac{x^3}{3}-\dfrac{x^2}{8}-\dfrac{1}{8x}-\dfrac{1}{16}log(2x+1)+C$
• D. $\dfrac{x^3}{6}-\dfrac{x^2}{8}+\dfrac{1}{8x}-\dfrac{1}{16}log(2x+1)+C$

1 Verified Answer | Published on 17th 09, 2020

Q5 Single Correct Medium
The value of $\int { { e }^{ \tan { \theta } } } \left( \sec { \theta } -\sin { \theta } \right) d\theta$ is equal to ?
• A. $-{ e }^{ \tan { \theta } }\sin { \theta } +C$
• B. ${ e }^{ \tan { \theta } }\sin { \theta } +C$
• C. ${ e }^{ \tan { \theta } }\sec { \theta } +C$
• D. ${ e }^{ \tan { \theta } }\cos { \theta } +C$