Mathematics

$$\displaystyle\int \left(e^x\right)^2 e^x dx$$ is equal to


SOLUTION
Now,
$$\displaystyle\int \left(e^x\right)^2 e^x dx$$
$$=\displaystyle\int \left(e^x\right)^2 d(e^x)$$
$$=\dfrac{(e^x)^3}{3}+c$$ [ Where $$c$$ being integrating constant]
$$=\dfrac{e^{3x}}{3}+c$$
View Full Answer

Its FREE, you're just one step away


Subjective Medium Published on 17th 09, 2020
Next Question
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 111
Enroll Now For FREE

Realted Questions

Q1 Subjective Medium
$$\dfrac { d y } { d x } = ( 4 x + y + 1 ) ^ { 2 }$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q2 Single Correct Hard
The value of $$\displaystyle \int \frac{(ax^{2}-b)dx}{x\sqrt{c^{2}x^{2}-(ax^{2}+b)^{2}}}$$ is equal to
  • A. $$\displaystyle \frac{1}{c}\sin^{-1}\left ( ax+\frac{b}{x} \right )+k$$
  • B. $$\displaystyle c\sin^{-1}\left ( a+\frac{b}{x} \right )+k$$
  • C. none of these
  • D. $$\displaystyle \sin^{-1}\left ( \frac{ax+\frac{b}{x}}{c} \right )+k$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q3 Single Correct Hard
$$\displaystyle\int{\frac{1}{(x+1)\sqrt{2+x-x^2}}dx}$$ is equal to
  • A. $$\displaystyle \frac{2}{3}\sqrt{3\left(\frac{1}{x-1}\right)-1}+C$$
  • B. $$\displaystyle \frac{3}{2}\sqrt{3\left(\frac{1}{x-1}\right)-1}+C$$
  • C. $$\displaystyle-\frac{4}{3}\sqrt{3\left(\frac{1}{x-1}\right)-1}+C$$
  • D. $$\displaystyle-\frac{2}{3}\sqrt{3\left(\frac{1}{x+1}\right)-1}+C$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q4 Single Correct Medium
$$\int {[f(x)g\prime \prime (x) - f\prime \prime (x)g(x)]} dx$$ is equal to
  • A. $$\dfrac{{f\prime (x)}}{{g\prime (x)}}$$
  • B. $$f\prime (x)g(x) - f(x)g\prime (x)$$
  • C. $$f(x)g\prime (x) + f\prime (x)g(x)$$
  • D. $$f(x)g\prime (x) - f\prime (x)g(x)$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q5 Subjective Easy
Evaluate $$\int \dfrac{e^x-e^{-x}}{e^x+e^{-x}}dx$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer