Mathematics

# $\displaystyle\int \dfrac{\log x}{x} dx$ is equal to

##### SOLUTION
$I=\displaystyle\int \dfrac{\log x}{x} dx$

Let $\log x =t$

$\dfrac{1}{x}dx=dt$

Therefore,
$I=\int t \ dt$

$I=\dfrac{t^2}{2}+C$

$I=\dfrac{(\log x)^2}{2}+C$

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86

#### Realted Questions

Q1 Single Correct Medium
$\displaystyle \int \frac {dx}{x\sqrt{x^6-1}} =$
• A. $\frac {1}{3}cosec ^{-1}(x^3) +C$
• B. $\frac {1}{3}cot^{-1}(x^3)+C$
• C. none of these
• D. $\frac {1}{3} sec^{-1}(x^3) +C$

1 Verified Answer | Published on 17th 09, 2020

Q2 Single Correct Medium
Evaluate the integral
$\displaystyle \int_{0}^{\pi_/{2}}\frac{secx}{secx+co\sec x}dx$
• A. $\pi/3$
• B. $\pi/2$
• C. $\pi/8$
• D. $\pi/4$

1 Verified Answer | Published on 17th 09, 2020

Q3 Single Correct Medium
The value of $\displaystyle \int_{-2}^{2}(ax^{3}+bx+c)\ dx$ depends on:
• A. The value of $b$
• B. The value of $a$
• C. The value of $a$ and $b$
• D. The value of $c$

1 Verified Answer | Published on 17th 09, 2020

Q4 Subjective Medium
Evaluate $\int {\frac{{dx}}{{x\left( {{x^5} + 1} \right)}}}$

$\int \frac{2x^{2}}{3x^{4}2x} dx$