Mathematics

# $\displaystyle\int \dfrac{1}{\sqrt{3-6x-9x^2}}dx$ is equal to?

$\dfrac{1}{3}\sin^{-1}\left(\dfrac{3x+1}{2}\right)+c$

##### SOLUTION
$3-6x-9x^2=4-(9x^2+6x+1)=4-(3x+1)^2$

$\displaystyle \therefore\int\dfrac{1}{\sqrt{4-(3x+1)^2}}dx=\dfrac{1}{3}\sin^{-1}\left(\dfrac{3x+1}{2}\right)+c$.

Its FREE, you're just one step away

Single Correct Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86

#### Realted Questions

Q1 Single Correct Medium
$\int {[f(x)g\prime \prime (x) - f\prime \prime (x)g(x)]} dx$ is equal to
• A. $\dfrac{{f\prime (x)}}{{g\prime (x)}}$
• B. $f\prime (x)g(x) - f(x)g\prime (x)$
• C. $f(x)g\prime (x) + f\prime (x)g(x)$
• D. $f(x)g\prime (x) - f\prime (x)g(x)$

1 Verified Answer | Published on 17th 09, 2020

Q2 Subjective Medium
Write a value of
$\int { { a }^{ x }{ e }^{ x } } dx$

1 Verified Answer | Published on 17th 09, 2020

Q3 Subjective Medium
Integrate:
$\displaystyle\int \frac{1}{1 + \tan x}\ dx$

1 Verified Answer | Published on 17th 09, 2020

Q4 Subjective Medium
$\displaystyle \int _{ 0 }^{ 1 } x^2+ 2x dx$

Consider two differentiable functions $f(x), g(x)$ satisfying $\displaystyle 6\int f(x)g(x)dx=x^{6}+3x^{4}+3x^{2}+c$ & $\displaystyle 2 \int \frac {g(x)dx}{f(x)}=x^{2}+c$. where $\displaystyle f(x)>0 \forall x \in R$