Mathematics

$$\displaystyle\int { \dfrac { { 3x }^{ 13 }+{ 2x }^{ 11 } }{ \left( { 2x }^{ 4 }+{ 3x }^{ 2 }+1 \right) ^{ 4 } }  }dx $$ is equal to 


ANSWER

$$\dfrac { 1 }{ 6 } \times \dfrac { 1 }{ \left( 2+\frac { 3 }{ { x }^{ 2 } } +\dfrac { 1 }{ { x }^{ 4 } } \right) ^{ 3 } } +c$$


View Full Answer

Its FREE, you're just one step away


Single Correct Medium Published on 17th 09, 2020
Next Question
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84
Enroll Now For FREE

Realted Questions

Q1 Multiple Correct Medium
$$\displaystyle \int \frac{dx}{x^{3}\left ( 1 - \displaystyle \frac{1}{2x^{2}} \right )}$$ equals
  • A. $$ln| 2x^{2} - 1| + 2\, ln |x| + C$$
  • B. $$ln| 2x^{2} - 1| - 2\, ln |x| + C$$
  • C. $$ln| 2x^{2} - 1| - ln (x^{2}) - ln2 + C$$
  • D. $$ln \left | 1 - \displaystyle \frac{1}{2x^{2}} \right | + c$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q2 Subjective Medium
Evaluate the following integrals:
$$\int { \cfrac { { x }^{ 3 }+x+1 }{ { x }^{ 2 }-1 }  } dx$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q3 Subjective Medium
$$\int { \sin ^{ 2 }{ \left( 2x+5 \right)  }  } dx\quad $$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q4 Single Correct Hard
If $$\displaystyle f\left ( x \right )$$ and $$\displaystyle g\left ( x \right )$$ be continuous functions over the closed interval $$\displaystyle \left [ 0, a \right ]$$ such that $$\displaystyle f\left ( x \right )= f\left ( a-x \right )$$ and $$\displaystyle g\left ( x \right )+g\left ( a-x \right )= 2.$$ Then $$\displaystyle \int_{0}^{a}f\left (x \right )\dot g\left (x \right )dx$$ is equal to
  • A. $$\displaystyle \int_{0}^{a}g\left ( x \right )dx$$
  • B. $$\displaystyle 2a$$
  • C. none of these
  • D. $$\displaystyle \int_{0}^{a}f\left ( x \right )dx$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q5 Subjective Medium
$$\displaystyle \int_0^{2\pi}\cos^5x\,\,dx$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer