Mathematics

# $\displaystyle\int \dfrac 1{x\log x} dx$

##### SOLUTION

$\displaystyle\int \dfrac 1{x\log x} dx$

$t=\log x\implies dt=\dfrac 1x dx$

$\implies \displaystyle \int \dfrac 1tdt$

$=\log t$

$=\log (\log x)+c$

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84

#### Realted Questions

Q1 Single Correct Medium
If $\displaystyle \int { \left( u\cfrac { dv }{ dx } \right) } dx=uv-\int { wdx }$, then $w=$
• A. $\cfrac { du }{ dx } \cfrac { dv }{ dx }$
• B. $\cfrac { d }{ dx } (uv)$
• C. $u\cfrac { dv }{ dx }$
• D. $v\cfrac { du }{ dx }$

1 Verified Answer | Published on 17th 09, 2020

Q2 Single Correct Medium
$\lim_\limits{n\to \infty}\left(\frac{(n+1)(n+2)......3n}{2^{2n}}\right)^{\frac{1}{n}}$ is equal to:
• A. $\dfrac{9}{e^2}$
• B. $3 \log 3-2$
• C. $\dfrac{18}{4}$
• D. $\dfrac{27}{e^2}$

1 Verified Answer | Published on 17th 09, 2020

Q3 Single Correct Medium
Solve :
$\displaystyle \int \frac{1}{x+x\log x}dx.$
• A. $\displaystyle \frac{1}{2}\log \left ( 1+\log x \right ).$
• B. $\displaystyle \log \left ( \log x \right ).$
• C. $\displaystyle \log \left ( 1-\log x \right ).$
• D. $\displaystyle \log \left ( 1+\log x \right ).$

1 Verified Answer | Published on 17th 09, 2020

Q4 Subjective Medium
Solve$\displaystyle\int\dfrac{{\cos x}}{{1 + \cos x}}dx$

Let $\displaystyle f\left ( x \right )=\frac{\sin 2x \cdot \sin \left ( \dfrac{\pi }{2}\cos x \right )}{2x-\pi }$