Mathematics

$$\displaystyle\int \dfrac 1{x\log x} dx$$


SOLUTION

$$\displaystyle\int \dfrac 1{x\log x} dx$$

$$t=\log x\implies dt=\dfrac 1x dx $$

$$\implies \displaystyle \int \dfrac 1tdt $$ 

$$=\log t$$ 

$$=\log (\log x)+c$$

View Full Answer

Its FREE, you're just one step away


Subjective Medium Published on 17th 09, 2020
Next Question
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84
Enroll Now For FREE

Realted Questions

Q1 Single Correct Medium
If $$\displaystyle \int { \left( u\cfrac { dv }{ dx }  \right)  } dx=uv-\int { wdx } $$, then $$w=$$
  • A. $$\cfrac { du }{ dx } \cfrac { dv }{ dx } $$
  • B. $$\cfrac { d }{ dx } (uv) $$
  • C. $$u\cfrac { dv }{ dx } $$
  • D. $$v\cfrac { du }{ dx } $$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q2 Single Correct Medium
$$\lim_\limits{n\to \infty}\left(\frac{(n+1)(n+2)......3n}{2^{2n}}\right)^{\frac{1}{n}}$$ is equal to:
  • A. $$\dfrac{9}{e^2}$$
  • B. $$3 \log 3-2$$
  • C. $$\dfrac{18}{4}$$
  • D. $$\dfrac{27}{e^2}$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q3 Single Correct Medium
Solve :
$$\displaystyle \int \frac{1}{x+x\log x}dx.$$
  • A. $$\displaystyle \frac{1}{2}\log \left ( 1+\log x \right ).$$
  • B. $$\displaystyle \log \left ( \log x \right ).$$
  • C. $$\displaystyle \log \left ( 1-\log x \right ).$$
  • D. $$\displaystyle \log \left ( 1+\log x \right ).$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q4 Subjective Medium
Solve$$\displaystyle\int\dfrac{{\cos x}}{{1 + \cos x}}dx$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q5 Passage Medium
Let $$\displaystyle f\left ( x \right )=\frac{\sin 2x \cdot \sin \left ( \dfrac{\pi }{2}\cos x \right )}{2x-\pi }$$

Then answer the following question.

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer