Mathematics

$$\displaystyle\int_{0}^{\pi/4}\sin^{3}2t\cos 2t\ dt$$.


SOLUTION

Let $$I=\displaystyle\int_{0}^{\pi/4}\sin^{3}2t\cos 2t\ dt$$

Let $$\sin 2t=u$$. 

Then, 

$$d(\sin 2t)=du$$ 

$$\Rightarrow 2\cos 2t\ dt=du$$ 

$$\Rightarrow \cos 2t dt=\dfrac{1}{2}du$$

Also, 

$$t=0\Rightarrow u=\sin 0=0$$ 

$$t=\dfrac{\pi}{4}$$ 

$$\Rightarrow u=\sin\dfrac{\pi}{2}=1$$

$$\therefore I=\dfrac{1}{2}\displaystyle\int_{0}^{1}u^{3}du$$ 

$$=\dfrac{1}{8}\left[u^{4}\right]_{0}^{1}=\dfrac{1}{8}$$

View Full Answer

Its FREE, you're just one step away


Subjective Medium Published on 17th 09, 2020
Next Question
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84
Enroll Now For FREE

Realted Questions

Q1 Single Correct Medium
$$\displaystyle \int \frac {ln \left ( x \right )} {x\sqrt{1 + ln \left ( x \right )}} dx$$ equlas
  • A. $$\displaystyle \frac{4}{3} \sqrt{1 + ln \left | x \right |} (ln \left | x \right | - 2) - c$$
  • B. $$\displaystyle \frac{1}{3} \sqrt{1 + ln \left | x \right |} (ln \left | x \right | - 2) + c$$
  • C. $$\displaystyle 2 \sqrt{1 + ln \left | x \right |} (3ln \left | x \right | - 2) + c$$
  • D. $$\displaystyle \frac{2}{3} \sqrt{1 + ln \left | x \right |} (ln \left | x \right | - 2) + c$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q2 Subjective Medium
Evaluate the following : $$\displaystyle\int \dfrac{1}{x^{2}+8x+12}.dx$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q3 Single Correct Hard
If $$\int { \left[ \log { \left( \log { x }  \right)  } +\cfrac { 1 }{ { \left( \log { x }  \right)  }^{ 2 } }  \right]  } dx=x\left[ f(x)-g(x) \right] +c$$ then

  • A. $$f(x)=\log { x } ;g(x)=\cfrac { 1 }{ \log { x } } $$
  • B. $$f(x)=;g(x)=\cfrac { 1 }{ \log { x } } ;g(x)=\log { \left( \log { x } \right) } $$
  • C. $$f(x)=\cfrac { 1 }{ x\log { x } } ;g(x)=\cfrac { 1 }{ \log { x } } $$
  • D. $$f(x)=\log { \left( \log { x } \right) } ;g(x)=\cfrac { 1 }{ \log { x } } $$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q4 Single Correct Hard
If $$\displaystyle \int_{0}^{\pi }\Theta ^{3}\log \sin \Theta d\Theta = k\displaystyle \int_{0}^{\pi }\Theta ^{2}\log \left ( \sqrt{2}\sin \Theta  \right )\: d\Theta $$, then $$k$$ equals
  • A. $$\dfrac {\pi}{2}$$
  • B. $$\pi $$
  • C. $$2\pi $$
  • D. $$\dfrac {3\pi}{2}$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q5 Single Correct Medium
Evaluate  $$\int _{ 0 }^{ 1 }{ \sqrt { \cfrac { x }{ 1-{ x }^{ 3 } }  }  } dx=$$
  • A. $$\cfrac{\pi}{4}$$
  • B. $$\cfrac{\pi}{3}$$
  • C. $$\cfrac{\pi}{6}$$
  • D. $$\cfrac{\pi}{2}$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer