Mathematics

# $\displaystyle\int_{0}^{\pi/4}\dfrac{\tan^{3}x}{1+\cos 2x}dx$

##### SOLUTION
Consider, $I=\displaystyle\int_{0}^{\pi/4}\dfrac{\tan^{3}x}{2\cos^{2}x}dx$

$\Rightarrow$ $I=\dfrac{1}{2}\displaystyle\int_{0}^{\pi/4}\tan^{3}x\sec^{2}x\ dx$

$\Rightarrow$ $I=\dfrac{1}{2}\displaystyle\int_{0}^{1}t^{3}dt$                 where $t=\tan x \ \ dt=sec^2x \ dx$

$\Rightarrow I=\dfrac{1}{2}\left[\dfrac{t^{4}}{4}\right]_{0}^{1}$

$\Rightarrow$ $I=\dfrac{1}{2}\left(\dfrac{1}{4}-0\right)$

$\Rightarrow$ $I=\dfrac{1}{8}$

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86

#### Realted Questions

Q1 Subjective Medium
Evaluate: $\displaystyle\int \:\dfrac{cos\:x+sin\:x}{\sqrt{sin\:2x}}\:dx$

1 Verified Answer | Published on 17th 09, 2020

Q2 Single Correct Medium
Evaluate $\displaystyle \int { \left( 1+x-{ x }^{ -1 } \right) { e }^{ { x+x }^{ -1 } } } dx$
• A. $\left( x+1 \right) { e }^{ { x+x }^{ -1 } }+c$
• B. $\left( x-1 \right) { e }^{ { x+x }^{ -1 } }+c$
• C. $\dfrac { 1 }{ 2 } x{ e }^{ { x+x }^{ -1 } }+c$
• D. $x.{ e }^{ { x+x }^{ -1 } }+c$

1 Verified Answer | Published on 17th 09, 2020

Q3 Subjective Medium

Evaluate the following definite integral:

$\displaystyle\int_{1}^{2} \dfrac 2x\ dx$

1 Verified Answer | Published on 17th 09, 2020

Q4 Subjective Hard
Evaluate:
$\displaystyle \int { \cfrac { { x }^{ 2 } }{ { x }^{ 4 }-{ x }^{ 2 }-12 } } dx$

Let $\displaystyle f\left ( x \right )=\frac{\sin 2x \cdot \sin \left ( \dfrac{\pi }{2}\cos x \right )}{2x-\pi }$