Mathematics

$$\displaystyle\int_{0}^{2}x\sqrt{x+2}dx$$


SOLUTION

$$I=\displaystyle\int_{0}^{2}x\sqrt{x+2}dx$$

Let $$x+2=t^{2}$$. Then , $$dx=2t dt$$

Also at $$x=0\Rightarrow t^{2}=x+2$$  $$\Rightarrow t^2=2$$ 

$$\Rightarrow t=\sqrt{2}$$ 

At $$x=2\Rightarrow t^{2}=4$$ 

$$\Rightarrow t=2$$

$$\therefore I=\displaystyle\int_{\sqrt{2}}^{2}(t^{2}-2)\sqrt{t^{2}}2t dt$$ 

$$2\displaystyle\int_{\sqrt{2}}^{2}(t^{4}-2t^{2})dt$$ 

$$2\left[\dfrac{t^{5}}{5}-\dfrac{2t^{3}}{3}\right]_{\sqrt{2}}^{2}$$

$$\Rightarrow I=2\left[\left(\dfrac{32}{5}-\dfrac{16}{3}\right)-\left(\dfrac{4\sqrt{2}}{5}-\dfrac{4\sqrt{2}}{3}\right)\right]$$ 

$$2\left(\dfrac{16}{15}+\dfrac{8\sqrt{2}}{15}\right)$$ 

$$\dfrac{32+16\sqrt{2}}{15}$$

View Full Answer

Its FREE, you're just one step away


Subjective Medium Published on 17th 09, 2020
Next Question
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84
Enroll Now For FREE

Realted Questions

Q1 Single Correct Medium
Evaluate: $$\displaystyle \int\cfrac{11^{\tfrac{x}{2}}}{\sqrt{11^{-x}+11^{x}}}dx$$
  • A. $$\displaystyle \frac{1}{\log_{11}e} \sin^{-1} 11^{x}+c$$
  • B. $$\displaystyle \frac{\cosh^{-1}11^{x}}{\log 11}+c$$
  • C. $$\log_{11}e\log|11^{x}+\sqrt{11^{2x}-1}|+c$$
  • D. $$\log_{11}e.\log[11^{x}+\sqrt{1+11^{2x}}]+c$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q2 Single Correct Hard
The value of $$\displaystyle \int_{0}^{\pi /2}\displaystyle \frac{\sin 8x\log \left ( \cot x \right )}{\cos 2x}dx$$ is
  • A. $$\pi $$
  • B. $$\dfrac {5\pi}{2}$$
  • C. $$\dfrac {3\pi}{2}$$
  • D. $$0$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q3 Single Correct Hard
The value of $$\displaystyle\int 5^{5^{5^x}}\cdot 5^{5^x}\cdot 5^x dx$$ is equal to?
  • A. $$\dfrac{5^{5^x}}{(ln 5)^3}+C$$
  • B. $$5^{5^{5^x}}(ln 5)^3+C$$
  • C. $$\dfrac{5^{5^{5^x}}}{(ln 5)^2}+C$$
  • D. $$\dfrac{5^{5^{5^x}}}{(ln 5)^3}+C$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q4 Subjective Medium
Evaluate the given integral.
$$\int { { x }^{ 3 }\log { x }  } dx$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q5 Subjective Easy
Evaluate $$\int \dfrac{e^x-e^{-x}}{e^x+e^{-x}}dx$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer