Mathematics

$$\displaystyle\int_{0}^{1} x^2-3x \  dx $$ 


SOLUTION

$$=\displaystyle\int_{0}^{1} x^2-3x \  dx $$ 

$$=\left. \dfrac {x^3}3-3\dfrac {x^2}{2}\right]_0^1$$ 

$$=\dfrac 13-\dfrac 32$$ 

$$=\dfrac {2-9}6 $$ 

$$=\dfrac {-7}6$$

View Full Answer

Its FREE, you're just one step away


Subjective Medium Published on 17th 09, 2020
Next Question
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86
Enroll Now For FREE

Realted Questions

Q1 Single Correct Medium
$$\lim_\limits{n \to \infty}\left[ \dfrac{1}{n^2} \sec^2\dfrac{1}{n^2} +\dfrac{2}{n}\sec^2\dfrac{4}{n^2}............+\dfrac{1}{n} \sec^21 \right]$$
  • A. $$\dfrac{1}{2} \sec 1$$
  • B. $$\dfrac{1}{2} \text{cosec} 1$$
  • C. $$\tan 1$$
  • D. $$\dfrac{1}{2}\tan 1$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q2 Single Correct Medium
lf $$f(x)=\left\{\begin{array}{l}e^{\cos x}\sin x, for |x|\leq 2\\2    ;       otherwise\end{array}\right.$$, then $$\displaystyle \int_{-2}^{3}f(x)dx$$ is
  • A. $$0$$
  • B. $$1$$
  • C. $$3$$
  • D. $$2$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q3 Single Correct Medium
$$\int _{ 0 }^{ \pi /2 }{ \cfrac { \cos { 2x }  }{ { \left( \sin { x } +\cos { x }  \right)  }^{ 2 } }  } dx=......$$
  • A. $$\cfrac { \pi }{ 4 } $$
  • B. $$\cfrac { \pi }{ 2 } $$
  • C. $$-\cfrac { \pi }{ 4 } $$
  • D. $$0$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q4 Subjective Medium
Solve $$\displaystyle\int\dfrac{x}{{\sqrt {{a^2} + {x^2}} }}dx$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q5 Subjective Medium
If $$f(x+f(y))=f(x)+y \space\forall x, y \in R$$ and $$f(0)=1$$, then prove that $$\int_{0}^{2} f(2-x) d x=2 \int_{0}^{1} f(x) d x$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer