Mathematics

$$\displaystyle\int _{ 0 }^{ \infty  }{ \dfrac { dx }{ \left( x+\sqrt { { x }^{ 2 }+1 }  \right) ^{ 3 } }  } =$$


ANSWER

$$\dfrac{3}{8}$$


View Full Answer

Its FREE, you're just one step away


Single Correct Medium Published on 17th 09, 2020
Next Question
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86
Enroll Now For FREE

Realted Questions

Q1 Single Correct Medium

$$\displaystyle \int_{0}^{1}\frac{x}{1+\sqrt{x}}dx_{=}$$
  • A. $$\frac{5}{3}+\log 4$$
  • B. $$\frac{5}{3}\log 4$$
  • C. $$\displaystyle \frac{3}{5}-l\mathrm{o}\mathrm{g}4\frac{3}{5}-l\mathrm{o}\mathrm{g}4$$
  • D. $$\frac{5}{3}-\log 4$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q2 One Word Medium
If $$\displaystyle \int \left[\left(\dfrac{x}{e}\right)^x + \left(\dfrac{e}{x} \right)^x \right]  \ln x \, dx = A \left(\dfrac{x}{e}\right)^x + B \left(\dfrac{e}{x} \right)^x + C$$, then value of $$A + B = $$?

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q3 Multiple Correct Hard
Suppose $$I_1=\displaystyle \int_{0}^{\pi/2} \cos(\pi \sin^2 x)dx;I_2=\displaystyle \int_{0}^{\pi/2} \cos(2\pi \sin^2x)dx$$ and $$I_3=\displaystyle \int_{0}^{\pi/2} \cos(\pi \sin x)dx $$ then
  • A. $$I_2=I_3$$
  • B. $$I_1=0$$
  • C. $$I_2+I_3=0$$
  • D. $$I_1+I_2+I_3=0$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q4 Single Correct Medium
$$\displaystyle \int\frac{x\sin^{-1}x}{\sqrt{1-x^{2}}}dx$$ is equal to
  • A. $$x+\sqrt{1-x^{2}}sin^{-1}x+c$$
  • B. $$x+sin^{-1}x+c$$
  • C. $$x-sin^{-1}x+c$$
  • D. $$x-\sqrt{1-x^{2}}sin^{-1}x+c$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q5 Single Correct Hard
If $$\displaystyle I=\int _{ 0 }^{ { \pi  }/{ 2 } }{ \ell n { \left( \sin { x }  \right)  }  }\ dx$$ then $$\displaystyle \int _{ { -\pi  }/{ 4 } }^{ { \pi  }/{ 4 } }{ \ell n { \left( \sin { x } +\cos { x }  \right) dx= }  } $$
  • A. $$\dfrac { l }{ 4 } $$
  • B. $$\dfrac { l }{ \sqrt { 2 } }$$
  • C. $$I$$
  • D. $$\dfrac { l }{ 2 } $$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer