Mathematics

$$\displaystyle \overset{\pi/2}{\underset{0}{\int}} e^x \,\sin \,x \,dx$$ is equal to


ANSWER

$$\dfrac{e^{\pi/2} - 1}{2}$$


View Full Answer

Its FREE, you're just one step away


Single Correct Medium Published on 17th 09, 2020
Next Question
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86
Enroll Now For FREE

Realted Questions

Q1 Single Correct Medium
If $$\displaystyle I=\int x\sqrt{\frac{x^{2}+1}{x^{2}-1}}dx,$$ then $$I$$ equals


  • A. $$\displaystyle \frac{1}{2}\sqrt{x^{4}-1}+\frac{1}{2}\sqrt{x^{4}+1}+C$$
  • B. $$\displaystyle \sqrt{x^{4}-1}+\sin^{-1}\left ( x^{2} \right )+C$$
  • C. $$\displaystyle \sqrt{x^{4}-1}+2\sin^{-1}\left ( x^{2} \right )+C$$
  • D. $$\displaystyle \frac{1}{2}\sqrt{x^{4}-1}+\frac{1}{2}\log\left ( x^{2}+\sqrt{x^{4}-1} \right )+C$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q2 Single Correct Hard
If $$\displaystyle \int \frac{dx}{\left ( x-p \right )\sqrt{\left ( x-p \right )\left ( x-q \right )}} \displaystyle =-\frac{2}{p-q}\sqrt{\frac{x-a}{x-b}}+c$$ then find $$a$$ and $$b$$ are respectively
  • A. $$p,q$$
  • B. $$q,q^2$$
  • C. $$p^2,q^2$$
  • D. $$q,p$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q3 Subjective Medium
$$I=\displaystyle\int x^2\left(1-\dfrac{2}{x}\right)^2dx$$. Evaluate the following functions w.r.t. x.

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q4 Subjective Hard
Find :
$$\int { \dfrac { { se }c^{ 2 }x }{ { tan }^{ 2 }x+4 }  } dx$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q5 Passage Hard
Let us consider the integral of the following forms
$$f{(x_1,\sqrt{mx^2+nx+p})}^{\tfrac{1}{2}}$$
Case I If $$m>0$$, then put $$\sqrt{mx^2+nx+C}=u\pm x\sqrt{m}$$
Case II If $$p>0$$, then put $$\sqrt{mx^2+nx+C}=u\pm \sqrt{p}$$
Case III If quadratic equation $$mx^2+nx+p=0$$ has real roots $$\alpha$$ and $$\beta$$, then put $$\sqrt{mx^2+nx+p}=(x-\alpha)u\:or\:(x-\beta)u$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer