Mathematics

# $\displaystyle \overset{\frac{\pi}{2}}{\underset{0}{\int}} \sin \,4x \,\cot \,c \,dx$ equals

$- \dfrac{\pi}{2}$

Its FREE, you're just one step away

Single Correct Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86

#### Realted Questions

Q1 Subjective Medium
Evaluate the following integral:
$\int { \sqrt [ 3 ]{ \cos ^{ 2 }{ x } } \sin { x } } dx\quad$

1 Verified Answer | Published on 17th 09, 2020

Q2 Subjective Hard
Evaluate : $\displaystyle \int ^x_{-x} (\cos ax - \sin bx)^2 dx$.

1 Verified Answer | Published on 17th 09, 2020

Q3 Single Correct Hard
$\displaystyle \int {\frac{{dx}}{{(x + p)\sqrt {(x - p)(x - q)} }}}$ is equal to
• A. $\frac{2}{{p - q}}\sqrt {\frac{{x - p}}{{x - q}} + c}$
• B. $- \frac{2}{{p - q}}\sqrt {\frac{{x - q}}{{x - p}} + c}$
• C. None of these
• D. $\frac{1}{{\sqrt {\left( {x - p} \right)(x - q)} }} + c$

1 Verified Answer | Published on 17th 09, 2020

Q4 Subjective Medium
Evaluate: $\displaystyle\int {{{\cos 2x} \over {\sin x}}dx}$

$\int \frac{x}{x^2 + a^2} \;dx$