Mathematics

# $\displaystyle \overset{1}{\underset{-1}{\int}} x|x|dx$ is equal to

$0$

##### SOLUTION
Let $f(x)=x|x|$.
Now, $f(-x)=-x|-x|=-x|x|=-f(x)$.
So we have $f(x)$ is an odd function.
Now,
$\displaystyle\int\limits_{-1}^{1}x|x|\ dx =0$. [ Using property of definite integral]

Its FREE, you're just one step away

Single Correct Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 109

#### Realted Questions

Q1 Subjective Medium
$\text { Evaluate: } \int_{0}^{\pi / 2} \sin 2 x \log \tan x d x$

1 Verified Answer | Published on 17th 09, 2020

Q2 Subjective Medium
$\displaystyle \int e^{ax}.\sin(bx+c)dx$

1 Verified Answer | Published on 17th 09, 2020

Q3 Subjective Medium
Integrate : $\frac{1}{{\cos \left( {x - a} \right)\cos (x - b)}}$

1 Verified Answer | Published on 17th 09, 2020

Q4 Single Correct Hard
$\displaystyle \int { \frac { \sin ^{ 3 }{ xdx } }{ \left( 1+\cos ^{ 2 }{ x } \right) \sqrt { 1+\cos ^{ 2 }{ x } +\cos ^{ 4 }{ x } } } dx }$ is equal to
• A. $\sec ^{ -1 }{ \left( \sec { x } -\cos { x } \right) } +c$
• B. $\sec ^{ -1 }{ \left( \cos { x } -\tan { x } \right) } +c$
• C. $\sec ^{ -1 }{ \left( \cos { x } +\tan { x } \right) } +c$
• D. $\sec ^{ -1 }{ \left( \sec { x } +\cos { x } \right) } +c$

Consider two differentiable functions $f(x), g(x)$ satisfying $\displaystyle 6\int f(x)g(x)dx=x^{6}+3x^{4}+3x^{2}+c$ & $\displaystyle 2 \int \frac {g(x)dx}{f(x)}=x^{2}+c$. where $\displaystyle f(x)>0 \forall x \in R$