Mathematics

# $\displaystyle \int\frac{dx}{x(x^7+1)}$ is equal to

$\dfrac{1}{7}log\left(\dfrac{x^7}{x^7+1}\right)+c$

##### SOLUTION
$\displaystyle I= \int\dfrac{dx}{x(x^7+1)}$

multiplying and dividing by $x^6$ we get

$\displaystyle I= \int\dfrac{x^6dx}{x^7(x^7+1)}$

put $x^7 = t\rightarrow7x^6dx =dt$

$\displaystyle I= \dfrac17\int\dfrac{dt}{t(t+1)}$

$\displaystyle I=\dfrac17 \int\dfrac{dt}{t^2+t}\Rightarrow\int\dfrac{1}{ \begin{pmatrix}t^2+t+\dfrac14-\dfrac14\end{pmatrix}}dt$

$I=\dfrac17\displaystyle \int\dfrac{1}{(t+\dfrac12)^2-(\dfrac12)^2}dt$

$\displaystyle \Rightarrow I= \dfrac17\times\dfrac{1}{2\times\dfrac12}log\begin{pmatrix}\dfrac{t+\dfrac12-\dfrac12}{t+\dfrac12+\dfrac12}\end{pmatrix} + C$

$\begin{bmatrix}\because\displaystyle \int\dfrac{1}{x^2-a^2}dx =\dfrac{1}{2a}log\dfrac{x-a}{x+a}+ C\end{bmatrix}$

$\Rightarrow I= \dfrac17log\begin{pmatrix}\dfrac{t}{t+1}\end{pmatrix} + C$

$\Rightarrow I= \dfrac17log\begin{pmatrix}\dfrac{x^7}{x^7+1}\end{pmatrix} + C$

$\therefore \text {option B is correct}$

Its FREE, you're just one step away

Single Correct Hard Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 114

#### Realted Questions

Q1 Subjective Hard
Evaluate:
$\int { \sqrt { 4-{ x }^{ 2 } } } dx\quad$

1 Verified Answer | Published on 17th 09, 2020

Q2 Subjective Medium
$\displaystyle\int 2x\sqrt{x} dx$.

1 Verified Answer | Published on 17th 09, 2020

Q3 Subjective Medium
Solve  $\int {\left( {3x - 2} \right)\sqrt {2{x^2} - x + 1} dx}$

1 Verified Answer | Published on 17th 09, 2020

Q4 Single Correct Medium
$I = \displaystyle \int _{ 0 }^{ 1 }{ { x }^{ 2 } } { e }^{ -x }dx$
• A. $I=1-\dfrac{1}{e}$
• B. $I=2-\dfrac{1}{2e}$
• C. $I=2-\dfrac{1}{e^2}$
• D. $I=2-\dfrac{1}{e}$

1 Verified Answer | Published on 17th 09, 2020

Q5 Single Correct Medium
$\displaystyle \int_2^3\dfrac{dx}{x^2-1}$
• A. $log\dfrac{3}{2}$
• B. $2log\dfrac{3}{2}$
• C. $\log\dfrac{3}{2}$
• D. $\dfrac{1}{2}log\dfrac{3}{2}$