Mathematics

# $\displaystyle \int\dfrac{{1-x^{}}}{1+x^{2}}$ dx

##### SOLUTION
$\displaystyle \int \dfrac{1}{1+x^2}dx-\displaystyle\int \dfrac{x}{1+x^2}dx$

$\tan^{-1}x-\dfrac{1}{2}\displaystyle\int \dfrac{2x}{1+x^2}dx\cdots(1)$

Consider $\displaystyle \int \dfrac{2x}{1+x^2}dx$

put $x^2=t\implies 2x dx=dt$

$\implies \displaystyle \int \dfrac{1}{1+t}dt\\\log({1+t})\\\log(1+x^2)$

Put it in $(1)$
$\implies \tan^{-1}x-\dfrac{1}{2}\log(1+x^2)+c$

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86

#### Realted Questions

Q1 Subjective Medium
Solve:$\int _{ 0 }^{ \log { 2 } }{ \cos { 2x } dx }$=

1 Verified Answer | Published on 17th 09, 2020

Q2 Subjective Medium
Solve:$\int x^2\cos^3x.dx$

1 Verified Answer | Published on 17th 09, 2020

Q3 Subjective Medium
Write a value of
$\int { { e }^{ \log { \sin { x } } }\cos { x } } dx$

1 Verified Answer | Published on 17th 09, 2020

Q4 Single Correct Medium
$\displaystyle \int_{0}^{\pi/2} \sqrt{1 - sin \,2 \,x}dx$ is equal to
• A. $2 \sqrt{2}$
• B. $2 (\sqrt{2} + 1)$
• C. $2$
• D. $2 (\sqrt{2} - 1)$

Integrate with respect to $'x'$:
$x\tan ^{ -1 }{ x }$