Mathematics

# $\displaystyle \int {\sin x\sqrt {1 - \cos 2x} } \;dx$

##### SOLUTION
$\displaystyle \int sin\,x\sqrt{1-cos\,2x}\,\,dx\,\, 1-cos\,x = 2\,sin^{2}x$
$\displaystyle \Rightarrow \sqrt{2}\int sin\,x(sin\,x)dx$
$\displaystyle \Rightarrow \sqrt{2}\int sin^{2}x\,dx \Rightarrow \frac{+\sqrt{2}}{2}\int 1-cos\,2x\,dx$
$\displaystyle \frac{1}{\sqrt{2}}(x)-\frac{1}{2\sqrt{2}}sin\,2x$ Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86

#### Realted Questions

Q1 Subjective Medium
Evaluate: $I =\displaystyle \int \log \sin x dx$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q2 Single Correct Medium
The value of $\overset{2x}{\underset{0}{\int}} [\sin 2x(1 + \cos 3x)]{dx}$, where $[t]$ denotes the greatest integer function, is:
• A. $-2\pi$
• B. $\pi$
• C. $2\pi$
• D. $-\pi$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q3 One Word Medium
$\displaystyle \int \frac{x^{5/2}}{\sqrt{1+x^{7}}}dx \displaystyle =\frac{1}{k}log\left ( x^{k}+\sqrt{1+x^{7}} \right )+C$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q4 Subjective Medium

Evaluate the following definite integral:

$\displaystyle\int_{0}^{\pi/2}\dfrac{\sin x+\cos x}{3+\sin 2x}dx$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q5 Passage Medium
Consider two differentiable functions $f(x), g(x)$ satisfying $\displaystyle 6\int f(x)g(x)dx=x^{6}+3x^{4}+3x^{2}+c$ & $\displaystyle 2 \int \frac {g(x)dx}{f(x)}=x^{2}+c$. where $\displaystyle f(x)>0 \forall x \in R$

On the basis of above information, answer the following questions :

Asked in: Mathematics - Limits and Derivatives

1 Verified Answer | Published on 17th 08, 2020