Mathematics

# $\displaystyle \int{ \sin }^{ 4 }x \cos x dx$

##### SOLUTION
$\displaystyle \int \sin^4x\cos xdx$
Let $\sin x=t\implies \cos xdx=dt$
$\displaystyle\int t^4dt\\\dfrac{t^5}{5}+c\\\dfrac{\sin^5x}{5}+c$

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84

#### Realted Questions

Q1 Subjective Medium
Integarte $\displaystyle\int^2_0|1-x|dx$

1 Verified Answer | Published on 17th 09, 2020

Q2 Single Correct Medium
$\int_{-1}^{1 / 2} \dfrac{e^{x}\left(2-x^{2}\right) d x}{(1-x) \sqrt{1-x^{2}}}$ is equal to
• A. $\dfrac{\sqrt{e}}{2}(\sqrt{3}+1)$
• B. $\dfrac{\sqrt{3 e}}{2}$
• C. $\sqrt{\dfrac{e}{3}}$
• D. $\sqrt{3 e}$

1 Verified Answer | Published on 17th 09, 2020

Q3 Subjective Medium
Evaluate: $\displaystyle \overset{\pi}{\underset{0}{\int}} \dfrac{4x \sin x}{1 + \cos^2 x}dx$.

1 Verified Answer | Published on 17th 09, 2020

Q4 Subjective Medium
$\int { \dfrac { dx }{ { x }^{ { 1 }/{ 2 } }+{ x }^{ { 1 }/3 } } }$

$\int_{}^{} {\frac{{ - 1}}{{\sqrt {1 - {x^2}} }}dx}$