Mathematics

$$\displaystyle \int_{\pi/4}^{\pi/2}{\sqrt{2+\sqrt{2+2\cos 4x}}dx}$$ is equal to 


ANSWER

$$\sqrt{2}$$


View Full Answer

Its FREE, you're just one step away


Single Correct Medium Published on 17th 09, 2020
Next Question
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86
Enroll Now For FREE

Realted Questions

Q1 Single Correct Medium
$$\int_{}^{} {x{{\sin }^{ - 1}}xdx} $$
  • A. $$\frac{1}{4}{\sin ^{ - 1}}x\left( {2x + 1} \right) + \frac{{x\sqrt {1 - {x^2}} }}{4} + c$$
  • B. $$\frac{1}{4}{\cos ^{ - 1}}x\left( {2x + 1} \right) + \frac{{x\sqrt {1 - {x^2}} }}{4} + c$$
  • C. $$\frac{1}{4}{\sin ^{ - 1}}x\left( {2x + 1} \right) - \frac{{x\sqrt {1 - {x^2}} }}{4} + c$$
  • D. $$\frac{1}{4}{\sin ^{ - 1}}x\left( {2{x^2} + 1} \right) + \frac{{x\sqrt {1 - {x^2}} }}{4} + c]$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q2 Single Correct Medium
$$\displaystyle \int_{1}^{e}\log x \,dx =$$________
  • A. $$e + 1$$
  • B. $$e -1$$
  • C. $$e + 2$$
  • D. $$1$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q3 Single Correct Medium

$$\displaystyle \int_{0}^{\pi /2}\log(\tan x+\cot x)dx=$$
  • A. $$-\pi$$ log2
  • B. $$-\displaystyle \frac{\pi}{2}$$ log2
  • C. $$\displaystyle \frac{\pi}{2}$$ log2
  • D. $$\pi$$ log2

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q4 Multiple Correct Hard
$$\displaystyle \int _{ \alpha  }^{ \beta  } \sqrt { \frac { x-\alpha  }{ \beta -x }  } dx=$$
  • A. $$\displaystyle \frac{\pi^{2}}{2}(\beta-\alpha)$$
  • B. $$\displaystyle \int_{\alpha}{\beta}\sqrt{\frac{\beta+x}{x+\alpha}}dx$$
  • C. $$\displaystyle \int_{\alpha}{\beta}\sqrt{\frac{\beta-x}{x-\alpha}}dx$$
  • D. $$\displaystyle \frac{\pi}{2}(\beta-\alpha)$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q5 Subjective Medium
Find the value of $$\displaystyle\int\limits_{-\dfrac{\pi}{2}}^{\dfrac{\pi}{2}}|\sin x|\ dx$$.

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer