Mathematics

# $\displaystyle \int \left( 6x+5 \right) dx$

##### SOLUTION
$\displaystyle \int (6x+5)dx\\\displaystyle \int 6x dx+\int 5 dx\\\dfrac{6x^2}{2}+5x+c\\3x^2+5x+c$

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 109

#### Realted Questions

Q1 Subjective Medium
$\int { { \left( \cfrac { 2x-1 }{ 3\sqrt { x } } \right) }^{ 2 } } dx$ on $\left( 0,\infty \right)$

1 Verified Answer | Published on 17th 09, 2020

Q2 Subjective Medium

Solve:

$\int_{0}^{\frac{\pi }{2}}{\dfrac{\sin xdx}{9+{{\cos }^{2}}x}}$

1 Verified Answer | Published on 17th 09, 2020

Q3 Single Correct Medium
Evaluate:
$\displaystyle \int {\left(\frac{1}{{\sqrt {x + a} + \sqrt {x + b} }}\right)dx}$
• A. $\dfrac{3}{{2(a - b)}}({(x + a)^{3/2}} - {(x + b)^{3/2}}) + c$
• B. $\dfrac{2}{{3(a - b)}}({(x - a)^{3/2}} - {(x + b)^{3/2}}) + c$
• C. $\dfrac{2}{{3(a - b)}}({(x - a)^{3/2}} - {(x - b)^{3/2}}) + c$
• D. $\dfrac{2}{{3(a - b)}}({(x + a)^{3/2}} - {(x + b)^{3/2}}) + c$

1 Verified Answer | Published on 17th 09, 2020

Q4 Single Correct Hard
The value of $\displaystyle\int{\frac{x^4-1}{x^2{(x^4+x^2+1)}^{\frac{1}{2}}}dx}$ is equal to
• A. $\displaystyle\sqrt{\frac{x^4+x^2+1}{x}}+C$
• B. $\displaystyle\sqrt{\frac{x^4+x^2+1}{x^3}}+C$
• C. None of these
• D. $\displaystyle\sqrt{\frac{x^4+x^2+1}{x^2}}+C$

$\displaystyle\int \dfrac{1}{e^x+e^{-x}}dx$.