Mathematics

$$\displaystyle \int \frac{\sin x+\cos x}{\sqrt{\left ( 1+\sin 2x \right )}}$$dx is


ANSWER

$$x+C$$


SOLUTION
$$\displaystyle \int \frac{\sin x+\cos x}{\sqrt{\left ( 1+\sin 2x \right )}}$$dx 

$$=\displaystyle \int  \frac { \sin  x+\cos  x }{ \sqrt { { (\sin  x+\cos  x) }^{ 2 } }  } dx$$

$$=\int 1 dx$$
$$=x+C$$
View Full Answer

Its FREE, you're just one step away


Single Correct Medium Published on 17th 09, 2020
Next Question
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 114
Enroll Now For FREE

Realted Questions

Q1 Single Correct Hard
Evaluate: $$\int \displaystyle \frac{dx}{x^{3} (x^{3} + 1)^{1/3}}$$
  • A. $$\displaystyle \frac{1}{2} \left ( 1 - \frac{1}{x^{3}} \right )^{1/3} + c$$
  • B. $$\displaystyle \frac{1}{2} \left ( 1 - \frac{1}{x^{3}} \right )^{2/3} + c$$
  • C. $$\displaystyle -\frac{1}{2} \left ( 1 + \frac{1}{x^{3}} \right )^{1/3} + c$$
  • D. $$\displaystyle -\frac{1}{2} \left ( 1 + \frac{1}{x^{3}} \right )^{2/3} + c$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q2 One Word Medium
Evaluate:$$\displaystyle \int_{-1}^{1}\left [ \sqrt{1+x+x^{2}}-\sqrt{1-x+x^{2}} \right ]dx$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q3 Subjective Medium
Solve $$\displaystyle \int \dfrac {dx}{2x^2-5x+6} $$ 

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q4 Single Correct Medium
Solve:
$$\displaystyle \int \dfrac{1 + x + \sqrt{x + x^2}}{\sqrt{x} + \sqrt{1 + x}}dx$$ is equal to
  • A. $$\dfrac{1}{2} \sqrt{1 + x}C$$
  • B. $$\sqrt{1 + x} + C$$
  • C. $$\dfrac{3}{2} (1 + x)^{32} + C$$
  • D. $$\dfrac{2}{3}(1 + x)^{3/2} + C$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q5 Passage Medium
Consider two differentiable functions $$f(x), g(x)$$ satisfying $$\displaystyle 6\int f(x)g(x)dx=x^{6}+3x^{4}+3x^{2}+c$$ & $$\displaystyle 2 \int \frac {g(x)dx}{f(x)}=x^{2}+c$$. where $$\displaystyle f(x)>0    \forall  x \in  R$$

On the basis of above information, answer the following questions :

Asked in: Mathematics - Limits and Derivatives


1 Verified Answer | Published on 17th 08, 2020

View Answer