Mathematics

$$\displaystyle \int { \frac { { x }^{ 2 } }{ { \left( 2+{ 3x }^{ 2 } \right) }^{ 5/2 } } dx }$$ is equal to


ANSWER

$$\dfrac { 1 }{ 5 } { \left[ \dfrac { { x }^{ 2 } }{ 2+3{ x }^{ 2 } } \right] }^{ 3/2 }+C$$


View Full Answer

Its FREE, you're just one step away


Single Correct Medium Published on 17th 09, 2020
Next Question
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 105
Enroll Now For FREE

Realted Questions

Q1 Subjective Medium
$$-2 \int x^2 e^{-2x} dx = e^{-2x} (ax^2 + bx + c)  + d$$, then

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q2 Single Correct Medium
$$\displaystyle\int \frac{\sqrt{2+x^{10}}}{x^{16}}dx$$
  • A. $$\displaystyle \frac { 1 }{ 30 } \times { (\frac { 2 }{ { x }^{ 10 } } +1) }^{ \dfrac { 3 }{ 2 } }$$
  • B. $$\displaystyle { (\frac { 2 }{ { x }^{ 30 } } +1) }^{ \dfrac { 3 }{ 2 } }$$
  • C. $$\displaystyle \frac { 1 }{ 30 } \times { (\frac { 2 }{ { x }^{ 10 } } +1) }^{ \dfrac { 1 }{ 2 } }$$
  • D. $$\displaystyle -\frac { 1 }{ 30 } \times { (\frac { 2 }{ { x }^{ 10 } } +1) }^{ \dfrac { 3 }{ 2 } }$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q3 Single Correct Hard
If $$f(x) = \dfrac {x + 2}{2x + 3}$$, then $$\displaystyle \int \left (\dfrac {f(x)}{x^{2}}\right )^{1/2} dx = \dfrac {1}{\sqrt {2}}g \left (\dfrac {1 + \sqrt {2f(x)}}{1 - \sqrt {2f(x)}}\right ) - \sqrt {\dfrac {2}{3}}h \left (\dfrac {\sqrt {3f(x)} + \sqrt {2}}{\sqrt {3f(x)} - \sqrt {2}}\right ) + c$$, where
  • A. $$g(x) = \log |x|, h(x) = \tan^{-1}x$$
  • B. $$g(x) = h(x) = \tan^{-1}x$$
  • C. $$g(x) = \log|x|, h(x) = \log |x|$$
  • D. $$g(x) = \tan^{-1} x, h(x) = \log |x|$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q4 Subjective Medium
Evaluate the following:
$$\displaystyle \int_{0}^{\frac{\pi}{2}} \dfrac{tan \,xdx}{1 + m^2 \,tan^2 x}$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q5 Single Correct Medium
$$\displaystyle \int _{ 0 }^{ 1 }{ \tan ^{ -1 }{ \left( \dfrac { 2x }{ 1-{ x }^{ 2 } }  \right) dx }  } =\dfrac{\pi}{a}-\ln a$$. Find $$a$$.
  • A. $$1$$
  • B. $$-1$$
  • C. None of these
  • D. $$2$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer