Mathematics

# $\displaystyle \int { \frac { { e }^{ \log { \tan { x } } } }{ 3\tan ^{ 2 }{ x+1 } } dx } =$

$\log |3\sin^{2}x+\cos^{2}x|+c$

Its FREE, you're just one step away

Single Correct Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84

#### Realted Questions

Q1 Subjective Medium
Evaluate the following integral as limit of sum:
$\displaystyle \int_{0}^{2}e^x\ dx$

1 Verified Answer | Published on 17th 09, 2020

Q2 Subjective Hard
Evaluate:
$\int { \cfrac { dx }{ ({ x }^{ 2 }+2)({ x }^{ 2 }+4) } }$

1 Verified Answer | Published on 17th 09, 2020

Q3 Subjective Medium
Evaluate the following integral:
$\displaystyle \int_{-1}^{1}(x+3)dx$

1 Verified Answer | Published on 17th 09, 2020

Q4 Single Correct Medium
If $f (x) =\displaystyle \int_{2x}^{\sin x } \cos (t^3) dt ,$ then $f'(x)$ is equal to :
• A. $\sin ( \sin^3 x) \sin x -2 \sin ( 8x^3)$
• B. $\cos ( \cos^3 x) \cos x -2 \cos ( 8x^3)$
• C. $\cos ( \sin^3 x) - \cos (8x^3)$
• D. $\sin ( \sin^3 x) \cos x -2 \sin ( 8x^3)$
• E. $\cos ( \sin^3 x) \cos x -1 \cos ( 8x^3)$

Evaluate  $\int\limits_{ - \pi }^\pi {\frac{{2x\left( {1 + \sin x} \right)}}{{1 + {{\cos }^2}x}}} dx$