Mathematics

# $\displaystyle \int { \frac { 3x+1 }{ { \left( { 3x }^{ 2 }+2x+1 \right) }^{ 3 } } dx }$

##### SOLUTION
Let,  $3x^2+2x+1=t$

=>  $(6x+2)dx=dt$

=>  $2(3x+1)dx=dt$

So, given equation becomes,

=>  $\int \dfrac{dt}{2t^3}$

=>  $-\dfrac{1}{8t^4} +C$

=>  $\dfrac{-1}{8(3x^2+2x+1)^4} +C$

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84

#### Realted Questions

Q1 Single Correct Medium
$\int \dfrac {\sin^{-1}x-\cos^{-1}x}{\sin^{-1}x+\cos^{-1}x}dx=$
• A. $\dfrac {4}{\pi}[x \sin^{-1}+\sqrt {1-x^{2}}]-x+c$
• B. $\log [\sin^{-1}+\sqrt {1-x^{2}}]-x+c$
• C. $\dfrac {4}{\pi}[x \sin^{-1}+\sqrt {1-x^{2}}]+c$
• D. $\dfrac {2}{\pi}[x \sin^{-1}x-x \cos^{-1}x+2\sqrt {1-x^{2}}]+c$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q2 Subjective Hard
Solve :
$\displaystyle \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \cfrac{\sin x+\cos x}{\sqrt{\sin 2 x}} d x$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q3 One Word Medium
Evaluate:$\displaystyle \int_{-1}^{1}\left [ \sqrt{1+x+x^{2}}-\sqrt{1-x+x^{2}} \right ]dx$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q4 Single Correct Medium
$\int { \sqrt { secx-1 } } dx$ is equal to
• A. $2\ell n(cos\frac { x }{ 2 } +\sqrt { { cos }^{ 2 }\frac { x }{ 2 } -\frac { 1 }{ 2 } ) } +C$
• B. $\ell n(cos\frac { x }{ 2 } +\sqrt { { cos }^{ 2 }\frac { x }{ 2 } -\frac { 1 }{ 2 } ) } +C$
• C. $none$ $of$ $these$
• D. $-2\ell n(cos\frac { x }{ 2 } +\sqrt { { cos }^{ 2 }\frac { x }{ 2 } -\frac { 1 }{ 2 } ) } +C$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q5 Subjective Medium
If $\displaystyle \int \dfrac{e^x - 1}{e^x + 1}dx =f(x) + c$ then $f(x) =$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020