Mathematics

$$\displaystyle \int \dfrac{x+3}{(x+1)^{4}}dx$$


SOLUTION
View Full Answer

Its FREE, you're just one step away


Subjective Medium Published on 17th 09, 2020
Next Question
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84
Enroll Now For FREE

Realted Questions

Q1 Single Correct Medium
If $$\int f ( x ) d x = f ( x ) ,$$ then $$\int [ j ( x ) ] ^ { 2 } d x$$ is

  • A. $$[ f ( x ) ] ^ { 3 }$$
  • B. $$\dfrac { [ f ( x ) ] ^ { 3 } } { 3 }$$
  • C. $$[ f ( x ) ] ^ { 2 }$$
  • D. $$\dfrac { 1 } { 2 } [ f ( x ) ] ^ { 2 }$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q2 Single Correct Medium
 $$\displaystyle \int \cot x {dx}= $$
  • A. $$\ln (\sin^2x) +C$$
  • B. $$ (\sin x) +C$$
  • C. None of these
  • D. $$\ln (\sin x) +C$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q3 Single Correct Medium
If $$\int {\frac{{\sin x}}{{\sin \left( {x - \alpha } \right)}}dx = Ax + B\log \sin \left( {x - \alpha } \right) + C} ,$$ then value of $$(A,B)$$ is
  • A. $$\left( {\sin \alpha ,\cos \alpha } \right)$$
  • B. $$\left( { - \cos \alpha ,\sin \alpha } \right)$$
  • C. $$\left( { - \sin \alpha ,\cos \alpha } \right)$$
  • D. $$\left( {\cos \alpha ,\sin \alpha } \right)$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q4 Single Correct Hard
$$\displaystyle\int{\frac{x}{\sqrt{9+8x-x^2}}dx}$$ is equal to
  • A. $$\displaystyle-\sqrt{9+8x-x^2}+4\cos^{-1}{\left(\frac{x-4}{5}\right)}+C$$
  • B. $$\displaystyle-\sqrt{9+8x-x^2}+4\cos^{-1}{\left(\frac{x-3}{2}\right)}+C$$
  • C. $$\displaystyle\sqrt{9+8x-x^2}+4\sin^{-1}{\left(\frac{x-4}{5}\right)}+C$$
  • D. $$\displaystyle-\sqrt{9+8x-x^2}+4\sin^{-1}{\left(\frac{x-4}{5}\right)}+C$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q5 Passage Medium
Consider two differentiable functions $$f(x), g(x)$$ satisfying $$\displaystyle 6\int f(x)g(x)dx=x^{6}+3x^{4}+3x^{2}+c$$ & $$\displaystyle 2 \int \frac {g(x)dx}{f(x)}=x^{2}+c$$. where $$\displaystyle f(x)>0    \forall  x \in  R$$

On the basis of above information, answer the following questions :

Asked in: Mathematics - Limits and Derivatives


1 Verified Answer | Published on 17th 08, 2020

View Answer