Mathematics

# $\displaystyle \int \dfrac{e^x-e^{-x}}{e^x+e^{-x}}$

##### SOLUTION
$\displaystyle I=\int \frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}dx$
Let - $(e^{x}+e^{-x})=f$
$(e^{x}-e^{-x})dx=df$
$(e^{x}-e^{-x})dx=df$
$\therefore \displaystyle I =\int \frac{df}{f}$
$= \log f+C$
substituting value of 1-
$\therefore I=\log |e^{x}+e^{-x}|+C$

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84

#### Realted Questions

Q1 Subjective Hard
Evaluate : $\displaystyle\int \dfrac{\sec x}{1+ \text{cosec } x}dx$

1 Verified Answer | Published on 17th 09, 2020

Q2 Single Correct Medium
Evaluate :
$\displaystyle\int\limits_{ - 2}^2 {\frac{{{x^2} - x}}{{\sqrt {{x^2} + 4} }}dx}$
• A. $I=\sqrt {8} -4\ln 2$
• B. $I=2\sqrt {8} -\ln 2$
• C. $I=2\sqrt {8} +4\ln 2$
• D. $I=2\sqrt {8} -4\ln 2$

1 Verified Answer | Published on 17th 09, 2020

Q3 Single Correct Medium
$\displaystyle \int _0^{\pi /2} f(\sin 2x)\sin x\, dx = K\int_0^{\pi/2} f(\cos 2x) \cos x\,dx$ where $k$ equals to
• A. $4$
• B. $\sqrt{2}$
• C. $2\sqrt{2}$
• D. $2$

1 Verified Answer | Published on 17th 09, 2020

Q4 Single Correct Hard

$\displaystyle \int_{0}^{\pi /4}x\tan^{4}xdx=$
• A. $\dfrac{2}{3}\ln2+\dfrac{\pi^{2}}{32}-\dfrac{\pi}{12}-\dfrac{1}{6}$
• B. $\dfrac{2}{3}\ln2-\dfrac{\pi^{2}}{32}+\dfrac{\pi}{12}+\dfrac{1}{6}$
• C. $\dfrac{2}{3}\ln2+\dfrac{\pi^{2}}{32}-\dfrac{\pi}{12}-+\dfrac{1}{6}$
• D. $\dfrac{2}{3}\ln2+\dfrac{\pi^{2}}{32}-\dfrac{\pi}{6}-\dfrac{1}{6}$

Integrate the function $\frac{1}{\sqrt{(2-x)^2+1}}$