Mathematics

$$\displaystyle \int \dfrac{dx}{x\log{x}}$$


SOLUTION
Let $$logx=t$$

$$\Rightarrow$$  $$\dfrac{1}{x}dx=dt$$

$$\Rightarrow$$ $$\displaystyle \int \dfrac{1}{t}dt$$

$$\Rightarrow$$  $$logt+C$$

$$\Rightarrow$$  $$log(logx)+C$$
View Full Answer

Its FREE, you're just one step away


Subjective Medium Published on 17th 09, 2020
Next Question
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84
Enroll Now For FREE

Realted Questions

Q1 One Word Medium
Let $$ \int \frac{dx}{x^{2008} + x} = \frac{1}{p} ln[\frac{x^q}{1 + x^r}] + C $$ where p, q, r $$\in$$ N and need not be distinct, then the sum of the digit in value of (p + q + r) equals

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q2 One Word Medium
$$\displaystyle\int \frac{1}{4\sin ^{2}x+9\cos ^{2}x}dx=\frac{1}{k}\tan ^{-1}\left ( \frac{2}{3}\tan x \right ).$$ Find the value of $$k$$.

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q3 Single Correct Medium
$$\int x^\cfrac{13}{2} \sqrt{1+x^\cfrac{5}{2}}dx$$
  • A. $$\dfrac{2}{5}(\dfrac{(1+x^\cfrac32)^3}{6}+\dfrac{(1+x^\cfrac52)}{2}-\dfrac{(1+x^\cfrac52)^2}{2})$$
  • B. $$\dfrac{2}{5}(\dfrac{(1+x^\cfrac72)^3}{6}+\dfrac{(1+x^\cfrac52)}{2}-\dfrac{(1+x^\cfrac52)^2}{2})$$
  • C. $$\dfrac{2}{5}(\dfrac{(1+x^\cfrac82)^3}{6}+\dfrac{(1+x^\cfrac52)}{2}-\dfrac{(1+x^\cfrac52)^2}{2})$$
  • D. $$\dfrac{2}{5}(\dfrac{(1+x^\cfrac52)^3}{6}+\dfrac{(1+x^\cfrac52)}{2}-\dfrac{(1+x^\cfrac52)^2}{2})$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q4 Subjective Hard
Evaluate the integrals:
$$\displaystyle \int \dfrac{1}{\sqrt{3-4x}}dx$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q5 Subjective Easy
Evaluate:
$$ \int_{}^{} {\frac{{ - 1}}{{\sqrt {1 - {x^2}} }}dx} $$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer