Mathematics

# $\displaystyle \int \dfrac{d}{dx}(\tan^{-1}{x})dx=$_______$+c$

##### SOLUTION

We have,

$\int{\dfrac{d}{dx}\left( {{\tan }^{-1}}x \right)dx}$

On first differentiating and we get,

$\int{\dfrac{1}{1+{{x}^{2}}}}dx$

On integrating and we get,

$\int{\dfrac{1}{1+{{x}^{2}}}}dx={{\tan }^{-1}}x+c$

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84

#### Realted Questions

Q1 Subjective Medium
Evaluate $\int \sin x \sin(\cos x) \ dx$.

1 Verified Answer | Published on 17th 09, 2020

Q2 Subjective Medium
Evaluate:
$\displaystyle \int \dfrac {dx}{x(x^{3}+8)}$

1 Verified Answer | Published on 17th 09, 2020

Q3 Single Correct Medium
If $\displaystyle \int_{0}^{1}\frac{dt}{e^{t}+e^{-t}}=\tan^{-1}p$ then $p$, equals
• A. $\displaystyle \frac{e^{2}-1}{e^{2}+1}$
• B. $\displaystyle \frac{1-e}{1+e}$
• C. $\displaystyle \frac{e^{2}+1}{e-1}$
• D. $\displaystyle \frac{e-1}{e+1}$

1 Verified Answer | Published on 17th 09, 2020

Q4 Single Correct Medium
$\dfrac{x^{4}-5x^{2}+1}{(x^{2}+1)^{3}}=$
• A. $\displaystyle \frac{1}{(\mathrm{x}^{2}+1)}-\frac{1}{(\mathrm{x}^{2}+1)^{2}}+\frac{7}{(\mathrm{x}^{2}+1)^{3}}$
• B. $\displaystyle \frac{7}{(\mathrm{x}^{2}+1)}-\frac{7}{(\mathrm{x}^{2}+1)^{2}}+\frac{1}{(\mathrm{x}^{2}+1)^{3}}$
• C. $\displaystyle \frac{7}{(\mathrm{x}^{2}+1)}-\frac{1}{(\mathrm{x}^{2}+1)^{2}}-\frac{1}{(\mathrm{x}^{2}+1)^{3}}$
• D. $\displaystyle \frac{1}{(\mathrm{x}^{2}+1)}-\frac{7}{(\mathrm{x}^{2}+1)^{2}}+\frac{7}{(\mathrm{x}^{2}+1)^{3}}$

1 Verified Answer | Published on 17th 09, 2020

Q5 Single Correct Medium
$\int { (\cfrac { { 2 }^{ x }-5^{ x } }{ 10^{ x } } )dx }$ is equal to __________________.
• A. $\cfrac { { 2 }^{ x } }{ \log _{ e }{ 2 } } -\cfrac { 5^{ x } }{ \log _{ e }{ 5 } } +c$
• B. $\cfrac { { 2 }^{ x } }{ \log _{ e }{ 2 } } +\cfrac { 5^{ x } }{ \log _{ e }{ 5 } } +c$
• C. $\cfrac { { 5 }^{ -x } }{ \log _{ e }{ 5 } } -\cfrac { 2^{ -x } }{ \log _{ e }{ 2 } } +c$
• D. $\cfrac { { 2 }^{ -x } }{ \log _{ e }{ 2 } } -\cfrac { 5^{ -x } }{ \log _{ e }{ 5 } } +c$