Mathematics

$$\displaystyle \int \dfrac{8x+5}{4x^2+5x+6} dx$$


SOLUTION
Let $$t=4x^2+5x+6\\dt=8x+5dx\\\implies \displaystyle \int \dfrac 1tdt=\log t\\\log (4x^2+5x+6)+c$$
View Full Answer

Its FREE, you're just one step away


Subjective Medium Published on 17th 09, 2020
Next Question
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84
Enroll Now For FREE

Realted Questions

Q1 Subjective Hard
Integrate with respect to $$x$$:
$$\dfrac {x}{{x}^{2}+1}$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q2 Subjective Medium
Find the integral of the function
$${\sin ^3}\left( {2x + 1} \right)$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q3 Single Correct Hard
$$\displaystyle \int\frac{\sin^{2}x.\sec^{2}x+2\tan x.\sin^{-1}x.\sqrt{1-x^{2}}}{\sqrt{1-x^{2}}(1+\tan^{2}x)}dx=$$
  • A. $$(\cos^{2}x).(\sin^{-1}x)+c$$
  • B. $$(\sec^{2}x).(\cos^{-1}x)+c$$
  • C. $$(\sec^{2}x).(\tan^{-1}x)+c$$
  • D. $$(\sin^{2}x).(\sin^{-1}x)+c$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q4 Single Correct Hard
$$\displaystyle \int {\frac{{dx}}{{(x + p)\sqrt {(x - p)(x - q)} }}} $$ is equal to 
  • A. $$\frac{2}{{p - q}}\sqrt {\frac{{x - p}}{{x - q}} + c} $$
  • B. $$ - \frac{2}{{p - q}}\sqrt {\frac{{x - q}}{{x - p}} + c} $$
  • C. None of these
  • D. $$\frac{1}{{\sqrt {\left( {x - p} \right)(x - q)} }} + c$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q5 Single Correct Medium
$$\displaystyle \int e^{\cos x}\frac{\left (  x\sin^{3}x+\cos x \right )}{\sin ^{2}x}dx$$
  • A. $$\displaystyle x.e^{\cos x}-e^{\cos x}co\sec x.$$
  • B. $$\displaystyle -.e^{\cos x}+e^{\cos x}co\sec x.$$
  • C. $$\displaystyle -x.e^{\cos x}+e^{\cos x}co\sec x.$$
  • D. $$\displaystyle -x.e^{\cos x}-e^{\cos x}co\sec x.$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer