Mathematics

# $\displaystyle \int \dfrac{8x+5}{4x^2+5x+6} dx$

##### SOLUTION
Let $t=4x^2+5x+6\\dt=8x+5dx\\\implies \displaystyle \int \dfrac 1tdt=\log t\\\log (4x^2+5x+6)+c$

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84

#### Realted Questions

Q1 Subjective Hard
Integrate with respect to $x$:
$\dfrac {x}{{x}^{2}+1}$

1 Verified Answer | Published on 17th 09, 2020

Q2 Subjective Medium
Find the integral of the function
${\sin ^3}\left( {2x + 1} \right)$

1 Verified Answer | Published on 17th 09, 2020

Q3 Single Correct Hard
$\displaystyle \int\frac{\sin^{2}x.\sec^{2}x+2\tan x.\sin^{-1}x.\sqrt{1-x^{2}}}{\sqrt{1-x^{2}}(1+\tan^{2}x)}dx=$
• A. $(\cos^{2}x).(\sin^{-1}x)+c$
• B. $(\sec^{2}x).(\cos^{-1}x)+c$
• C. $(\sec^{2}x).(\tan^{-1}x)+c$
• D. $(\sin^{2}x).(\sin^{-1}x)+c$

1 Verified Answer | Published on 17th 09, 2020

Q4 Single Correct Hard
$\displaystyle \int {\frac{{dx}}{{(x + p)\sqrt {(x - p)(x - q)} }}}$ is equal to
• A. $\frac{2}{{p - q}}\sqrt {\frac{{x - p}}{{x - q}} + c}$
• B. $- \frac{2}{{p - q}}\sqrt {\frac{{x - q}}{{x - p}} + c}$
• C. None of these
• D. $\frac{1}{{\sqrt {\left( {x - p} \right)(x - q)} }} + c$

1 Verified Answer | Published on 17th 09, 2020

Q5 Single Correct Medium
$\displaystyle \int e^{\cos x}\frac{\left ( x\sin^{3}x+\cos x \right )}{\sin ^{2}x}dx$
• A. $\displaystyle x.e^{\cos x}-e^{\cos x}co\sec x.$
• B. $\displaystyle -.e^{\cos x}+e^{\cos x}co\sec x.$
• C. $\displaystyle -x.e^{\cos x}+e^{\cos x}co\sec x.$
• D. $\displaystyle -x.e^{\cos x}-e^{\cos x}co\sec x.$