Mathematics

# $\displaystyle \int \dfrac{1}{3x^{2}+x}dx$

##### SOLUTION

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84

#### Realted Questions

Q1 Single Correct Medium
If $\phi{\left(x\right)}={\phi}^{\prime}{\left(x\right)}$ and $\phi{\left(1\right)}=2$ then $\phi{\left(3\right)}$  is equal to
• A. $2{ \phi }^{ 2 }$
• B. $3{ \phi }^{ 2 }$
• C. $2{ \phi }^{ 3 }$
• D. ${ \phi }^{ 2 }$

1 Verified Answer | Published on 17th 09, 2020

Q2 Single Correct Medium
$\displaystyle \int tan^{-1}\frac{\sqrt{1+x^{2}}-1}{x}dx=$
• A. $xtan^{-1}x-\displaystyle \frac{1}{2}\log(1+x^{2})+c$
• B. $xtan^{-1}x+\displaystyle \frac{1}{2}\log(1+x^{2})+c$
• C. $\displaystyle \frac{1}{2}[xtan^{-1}x-\log(1+x^{2})]+c$
• D. $\frac{1}{2}[xtan^{-1}x-\displaystyle \frac{1}{2}\log(1+x^{2})]+c$

1 Verified Answer | Published on 17th 09, 2020

Q3 Subjective Medium
Integrate: $\dfrac { 3 x ^ { 2 } } { x ^ { 6 } + 1 }$

1 Verified Answer | Published on 17th 09, 2020

Q4 Subjective Medium
$\int 2^{2^{2^{x}}} 2^{2^{x}} 2^{x}dx$.

Let $\displaystyle I_{1}=\int_{0}^{1}(1-x^{2})^{1/3} dx$  &  $\displaystyle I_{2}=\int_{0}^{1}(1-x^{3})^{1/2} dx$