Mathematics

$$\displaystyle \int \dfrac {x^2}{x^3+64} dx$$


SOLUTION
$$\displaystyle \int \dfrac{x^2}{x^3+64}dx\\t=x^3+64\implies dt=3x^2dt\\\displaystyle  \dfrac 13\int \dfrac 1t dt=\dfrac 13\log t+c$$
View Full Answer

Its FREE, you're just one step away


Subjective Medium Published on 17th 09, 2020
Next Question
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86
Enroll Now For FREE

Realted Questions

Q1 Single Correct Hard

lf $$f(x)=p(x)q(x)$$ where $$p(x)=\sqrt{\cos x},\ q(x)=\displaystyle \log(\frac{1-x}{1+x})$$ then $$\displaystyle \int^{b}_{a} f(x)dx$$ equals where $$a=-1/2   b=1/2$$
  • A. $$2\displaystyle \int_{0}^{1/2}p(x)q(x)dx$$
  • B. $$\displaystyle \int_{0}^{b}p(x)q(x)$$
  • C. 1
  • D.

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q2 Single Correct Medium
If $$\displaystyle I = \int { \frac { \cos { x }  }{ 1-\sin { x } \cos { x }  } dx }, $$ then $$I$$ equals
  • A. $$\displaystyle \tan ^{ -1 }{ \left( \sin { x } -\cos { x }  \right)  } +\frac { 1 }{ 2\sqrt { 3 }  } \ln { \left| \frac { \sin { x } +\cos { x } -\sqrt { 3 }  }{ \sin { x } +\cos { x } +\sqrt { 3 }  }  \right|  } +c$$
  • B. $$\displaystyle \tan ^{ -1 }{ \left( \sin { x } -\cos { x }  \right)  } -\frac { 1 }{ \sqrt { 3 }  } \ln { \left| \frac { \sin { x } +\cos { x } -\sqrt { 3 }  }{ \sin { x } +\cos { x } +\sqrt { 3 }  }  \right|  } +c$$
  • C. $$\displaystyle \tan ^{ -1 }{ \left( \sin { x } -\cos { x }  \right)  } +\frac { 1 }{ \sqrt { 3 }  } \ln { \left| \frac { \sin { x } +\cos { x } -\sqrt { 3 }  }{ \sin { x } +\cos { x } +\sqrt { 3 }  }  \right|  } +c$$
  • D. $$\displaystyle \tan ^{ -1 }{ \left( \sin { x } -\cos { x }  \right)  } -\frac { 1 }{ 2\sqrt { 3 }  } \ln { \left| \frac { \sin { x } +\cos { x } -\sqrt { 3 }  }{ \sin { x } +\cos { x } +\sqrt { 3 }  }  \right|  } +c$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q3 Subjective Medium
Solve:-
$$\int {\frac{{dx}}{{\sqrt {{e^{2x}} - 1} }}} $$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q4 Single Correct Medium
$$n\overset{Lt}{\rightarrow}\infty \displaystyle \frac{[1+4+9+\ldots+n^{2}]}{n^{3}}=$$
  • A. 2
  • B. 3
  • C. 1
  • D. 1/3

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q5 Passage Medium
Consider two differentiable functions $$f(x), g(x)$$ satisfying $$\displaystyle 6\int f(x)g(x)dx=x^{6}+3x^{4}+3x^{2}+c$$ & $$\displaystyle 2 \int \frac {g(x)dx}{f(x)}=x^{2}+c$$. where $$\displaystyle f(x)>0    \forall  x \in  R$$

On the basis of above information, answer the following questions :

Asked in: Mathematics - Limits and Derivatives


1 Verified Answer | Published on 17th 08, 2020

View Answer